Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38782593

RESUMEN

BACKGROUND AND PURPOSE: DSC-MRI can be used to generate fractional tumor burden (FTB) maps, via application of relative CBV thresholds, to spatially differentiate glioblastoma recurrence from post treatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MRI protocol using preload, a moderate flip angle (MFA, 60°) and post-processing leakage correction. Recently, a DSC-MRI protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected RCBV equivalent to the reference protocol. This study aims to identify the RCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol. MATERIALS AND METHODS: Fifty-two patients with grade IV GBM who had prior surgical resection and received chemotherapy and radiotherapy were included in the study. Two sets of DSC-MRI data were collected sequentially first using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and co-registered with the anatomical post-contrast T1-weighted images. The reference MFA-based FTB maps were computed using previously published sRCBV thresholds (1.0 and 1.56). An ROC analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference. RESULTS: The mean sRCBV values of tumors across patients exhibited strong agreement (CCC = 0.99) between the two protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56. CONCLUSION: For LFA-based FTB maps, a sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumor. FTB maps aids in surgical planning, guiding pathological diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MRI. ABBREVIATIONS: LFA = low flip angle; MFA = moderate flip angle; sRCBV = standardized relative cerebral blood volume; FTB = fractional tumor burden; PTRE = post treatment radiation effects; ROC = receiver operating characteristics; CCC = concordance correlation coefficient.

2.
PLoS One ; 19(4): e0299267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568950

RESUMEN

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Medicina de Precisión , Heterogeneidad Genética , Imagen por Resonancia Magnética/métodos , Algoritmos , Aprendizaje Automático , Máquina de Vectores de Soporte , Receptores ErbB/genética
3.
Res Sq ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585856

RESUMEN

Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of glioblastoma (GBM). This heterogeneity is further exacerbated during GBM recurrence, as treatment-induced reactive changes produce additional intratumoral heterogeneity that is ambiguous to differentiate on clinical imaging. There is an urgent need to develop non-invasive approaches to map the heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We propose to predictively fuse Magnetic Resonance Imaging (MRI) with the underlying intratumoral heterogeneity in recurrent GBM using machine learning (ML) by leveraging image-localized biopsies with their associated locoregional MRI features. To this end, we develop BioNet, a biologically-informed neural network model, to predict regional distributions of three tissue-specific gene modules: proliferating tumor, reactive/inflammatory cells, and infiltrated brain tissue. BioNet offers valuable insights into the integration of multiple implicit and qualitative biological domain knowledge, which are challenging to describe in mathematical formulations. BioNet performs significantly better than a range of existing methods on cross-validation and blind test datasets. Voxel-level prediction maps of the gene modules by BioNet help reveal intratumoral heterogeneity, which can improve surgical targeting of confirmatory biopsies and evaluation of neuro-oncological treatment effectiveness. The non-invasive nature of the approach can potentially facilitate regular monitoring of the gene modules over time, and making timely therapeutic adjustment. These results also highlight the emerging role of ML in precision medicine.

4.
AJR Am J Roentgenol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477525

RESUMEN

This AJR Expert Panel Narrative explores the current status of advanced MRI and PET techniques for the post-therapeutic response assessment of high-grade adult-type gliomas, focusing on ongoing clinical controversies in current practice. Discussed techniques that complement conventional MRI and aid the differentiation of recurrent tumor from post-treatment effects include DWI and diffusion tensor imaging; perfusion MRI techniques including dynamic susceptibility contrast (DSC), dynamic contrast-enhanced MRI, and arterial spin labeling; MR spectroscopy including assessment of 2-hydroxyglutarate (2HG) concentration; glucose- and amino acid (AA)-based PET; and amide proton transfer imaging. Updated criteria for Response Assessment in Neuro-Oncology are presented. Given the abundant supporting clinical evidence, the panel supports a recommendation that routine response assessment after HGG treatment should include perfusion MRI, particularly given the development of a consensus recommended DSC-MRI protocol. Although published studies support 2HG MRS and AA PET, these techniques' widespread adoption will likely require increased availability (for 2HG MRS) or increased insurance funding in the United States (for AA PET). The article concludes with a series of consensus opinions from the author panel, centered on the clinical integration of the advanced imaging techniques into posttreatment surveillance protocols.

5.
PLoS One ; 18(12): e0287767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117803

RESUMEN

Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are currently actively enrolling patients for our 'Image-Based Mapping of Brain Tumors' study. Patients are eligible for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their presurgical scan. During surgery, sample anatomical locations are tracked using neuronavigation. The collected specimens from this research study are used to capture the intra-tumoral heterogeneity across brain tumors including quantification of genetic aberrations through whole-exome and RNA sequencing as well as other tissue analysis techniques. To date, these data (made available through a public portal) have been used to generate, test, and validate predictive regional maps of the spatial distribution of tumor cell density and/or treatment-related key genetic marker status to identify biopsy and/or treatment targets based on insight from the entire tumor makeup. This type of methodology, when delivered within clinically feasible time frames, has the potential to further inform medical decision-making by improving surgical intervention, radiation, and targeted drug therapy for patients with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen de Difusión Tensora , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Imagen por Resonancia Magnética/métodos , Biopsia , Encéfalo/patología , Mapeo Encefálico
6.
Front Oncol ; 13: 1156843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799462

RESUMEN

Introduction: 1.5 Tesla (1.5T) remain a significant field strength for brain imaging worldwide. Recent computer simulations and clinical studies at 3T MRI have suggested that dynamic susceptibility contrast (DSC) MRI using a 30° flip angle ("low-FA") with model-based leakage correction and no gadolinium-based contrast agent (GBCA) preload provides equivalent relative cerebral blood volume (rCBV) measurements to the reference-standard acquisition using a single-dose GBCA preload with a 60° flip angle ("intermediate-FA") and model-based leakage correction. However, it remains unclear whether this holds true at 1.5T. The purpose of this study was to test this at 1.5T in human high-grade glioma (HGG) patients. Methods: This was a single-institution cross-sectional study of patients who had undergone 1.5T MRI for HGG. DSC-MRI consisted of gradient-echo echo-planar imaging (GRE-EPI) with a low-FA without preload (30°/P-); this then subsequently served as a preload for the standard intermediate-FA acquisition (60°/P+). Both normalized (nrCBV) and standardized relative cerebral blood volumes (srCBV) were calculated using model-based leakage correction (C+) with IBNeuro™ software. Whole-enhancing lesion mean and median nrCBV and srCBV from the low- and intermediate-FA methods were compared using the Pearson's, Spearman's and intraclass correlation coefficients (ICC). Results: Twenty-three HGG patients composing a total of 31 scans were analyzed. The Pearson and Spearman correlations and ICCs between the 30°/P-/C+ and 60°/P+/C+ acquisitions demonstrated high correlations for both mean and median nrCBV and srCBV. Conclusion: Our study provides preliminary evidence that for HGG patients at 1.5T MRI, a low FA, no preload DSC-MRI acquisition can be an appealing alternative to the reference standard higher FA acquisition that utilizes a preload.

7.
Front Oncol ; 13: 1185738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849813

RESUMEN

Imaging is central to the clinical surveillance of brain tumors yet it provides limited insight into a tumor's underlying biology. Machine learning and other mathematical modeling approaches can leverage paired magnetic resonance images and image-localized tissue samples to predict almost any characteristic of a tumor. Image-based modeling takes advantage of the spatial resolution of routine clinical scans and can be applied to measure biological differences within a tumor, changes over time, as well as the variance between patients. This approach is non-invasive and circumvents the intrinsic challenges of inter- and intratumoral heterogeneity that have historically hindered the complete assessment of tumor biology and treatment responsiveness. It can also reveal tumor characteristics that may guide both surgical and medical decision-making in real-time. Here we describe a general framework for the acquisition of image-localized biopsies and the construction of spatiotemporal radiomics models, as well as case examples of how this approach may be used to address clinically relevant questions.

8.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770427

RESUMEN

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioma , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Homocigoto , Eliminación de Secuencia , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Imagen por Resonancia Magnética/métodos
9.
medRxiv ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37503239

RESUMEN

BACKGROUND: Glioblastoma is an extraordinarily heterogeneous tumor, yet the current treatment paradigm is a "one size fits all" approach. Hundreds of glioblastoma clinical trials have been deemed failures because they did not extend median survival, but these cohorts are comprised of patients with diverse tumors. Current methods of assessing treatment efficacy fail to fully account for this heterogeneity. METHODS: Using an image-based modeling approach, we predicted T-cell abundance from serial MRIs of patients enrolled in the dendritic cell (DC) vaccine clinical trial. T-cell predictions were quantified in both the contrast-enhancing and non-enhancing regions of the imageable tumor, and changes over time were assessed. RESULTS: A subset of patients in a DC vaccine clinical trial, who had previously gone undetected, were identified as treatment responsive and benefited from prolonged survival. A mere two months after initial vaccine administration, responsive patients had a decrease in model-predicted T-cells within the contrast-enhancing region, with a simultaneous increase in the T2/FLAIR region. CONCLUSIONS: In a field that has yet to see breakthrough therapies, these results highlight the value of machine learning in enhancing clinical trial assessment, improving our ability to prospectively prognosticate patient outcomes, and advancing the pursuit towards individualized medicine.

10.
Nat Rev Dis Primers ; 9(1): 29, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322012

RESUMEN

Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15-25% of patients do not respond to chemotherapy and 25-50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Trasplante de Células Madre Hematopoyéticas , Linfoma , Humanos , Anciano , Terapia Combinada , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Células Endoteliales , Trasplante Autólogo , Recurrencia Local de Neoplasia , Encéfalo , Linfoma/diagnóstico , Linfoma/terapia
11.
Alzheimers Dement ; 19(9): 3806-3814, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36906845

RESUMEN

INTRODUCTION: Resting-state functional magnetic resonance imaging (fMRI) graph theory may help detect subtle functional connectivity changes affecting memory prior to impairment. METHODS: Cognitively normal apolipoprotein E (APOE) ε4 carriers/noncarriers underwent longitudinal cognitive assessment and one-time MRI. The relationship of left/right hippocampal connectivity and memory trajectory were compared between carriers/noncarriers. RESULTS: Steepness of verbal memory decline correlated with decreased connectivity in the left hippocampus, only among APOE ε4 carriers. Right hippocampal metrics were not correlated with memory and there were no significant correlations in the noncarriers. Verbal memory decline correlated with left hippocampal volume loss for both carriers and noncarriers, with no other significant volumetric findings. DISCUSSION: Findings support early hippocampal dysfunction in intact carriers, the AD disconnection hypothesis, and left hippocampal dysfunction earlier than the right. Combining lateralized graph theoretical metrics with a sensitive measure of memory trajectory allowed for detection of early-stage changes in APOE ε4 carriers before symptoms of mild cognitive impairment are present. HIGHLIGHTS: Graph theory connectivity detects preclinical hippocampal changes in APOE ε4 carriers. The AD disconnection hypothesis was supported in unimpaired APOE ε4 carriers. Hippocampal dysfunction starts asymmetrically on the left.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Heterocigoto , Hipocampo/patología , Memoria , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/genética , Imagen por Resonancia Magnética , Enfermedad de Alzheimer/patología , Pruebas Neuropsicológicas
12.
Front Oncol ; 13: 1046629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733305

RESUMEN

Background: Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is widely used to distinguish high grade glioma recurrence from post treatment radiation effects (PTRE). Application of rCBV thresholds yield maps to distinguish between regional tumor burden and PTRE, a biomarker termed the fractional tumor burden (FTB). FTB is generally measured using conventional double-dose, single-echo DSC-MRI protocols; recently, a single-dose, dual-echo DSC-MRI protocol was clinically validated by direct comparison to the conventional double-dose, single-echo protocol. As the single-dose, dual-echo acquisition enables reduction in the contrast agent dose and provides greater pulse sequence parameter flexibility, there is a compelling need to establish dual-echo DSC-MRI based FTB mapping. In this study, we determine the optimum standardized rCBV threshold for the single-dose, dual-echo protocol to generate FTB maps that best match those derived from the reference standard, double-dose, single-echo protocol. Methods: The study consisted of 23 high grade glioma patients undergoing perfusion scans to confirm suspected tumor recurrence. We sequentially acquired single dose, dual-echo and double dose, single-echo DSC-MRI data. For both protocols, we generated leakage-corrected standardized rCBV maps. Standardized rCBV (sRCBV) thresholds of 1.0 and 1.75 were used to compute single-echo FTB maps as the reference for delineating PTRE (sRCBV < 1.0), tumor with moderate angiogenesis (1.0 < sRCBV < 1.75), and tumor with high angiogenesis (sRCBV > 1.75) regions. To assess the sRCBV agreement between acquisition protocols, the concordance correlation coefficient (CCC) was computed between the mean tumor sRCBV values across the patients. A receiver operating characteristics (ROC) analysis was performed to determine the optimum dual-echo sRCBV threshold. The sensitivity, specificity, and accuracy were compared between the obtained optimized threshold (1.64) and the standard reference threshold (1.75) for the dual-echo sRCBV threshold. Results: The mean tumor sRCBV values across the patients showed a strong correlation (CCC = 0.96) between the two protocols. The ROC analysis showed maximum accuracy at thresholds of 1.0 (delineate PTRE from tumor) and 1.64 (differentiate aggressive tumors). The reference threshold (1.75) and the obtained optimized threshold (1.64) yielded similar accuracy, with slight differences in sensitivity and specificity which were not statistically significant (1.75 threshold: Sensitivity = 81.94%; Specificity: 87.23%; Accuracy: 84.58% and 1.64 threshold: Sensitivity = 84.48%; Specificity: 84.97%; Accuracy: 84.73%). Conclusions: The optimal sRCBV threshold for single-dose, dual-echo protocol was found to be 1.0 and 1.64 for distinguishing tumor recurrence from PTRE; however, minimal differences were observed when using the standard threshold (1.75) as the upper threshold, suggesting that the standard threshold could be used for both protocols. While the prior study validated the agreement of the mean sRCBV values between the protocols, this study confirmed that their voxel-wise agreement is suitable for reliable FTB mapping. Dual-echo DSC-MRI acquisitions enable robust single-dose sRCBV and FTB mapping, provide pulse sequence parameter flexibility and should improve reproducibility by mitigating variations in preload dose and incubation time.

14.
medRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168377

RESUMEN

Magnetic resonance imaging (MRI) measurements are routinely collected during the treatment of high-grade gliomas (HGGs) to characterize tumor boundaries and guide surgical tumor resection. Using spatially matched MRI and transcriptomics we discovered HGG tumor biology captured by MRI measurements. We strategically overlaid the spatially matched omics characterizations onto a pre-existing transcriptional map of glioblastoma multiforme (GBM) to enhance the robustness of our analyses. We discovered that T1+C measurements, designed to capture vasculature and blood brain barrier (BBB) breakdown and subsequent contrast extravasation, also indirectly reveal immune cell infiltration. The disruption of the vasculature and BBB within the tumor creates a permissive infiltrative environment that enables the transmigration of anti-inflammatory macrophages into tumors. These relationships were validated through histology and enrichment of genes associated with immune cell transmigration and proliferation. Additionally, T2-weighted (T2W) and mean diffusivity (MD) measurements were associated with angiogenesis and validated using histology and enrichment of genes involved in neovascularization. Furthermore, we establish an unbiased approach for identifying additional linkages between MRI measurements and tumor biology in future studies, particularly with the integration of novel MRI techniques. Lastly, we illustrated how noninvasive MRI can be used to map HGG biology spatially across a tumor, and this provides a platform to develop diagnostics, prognostics, or treatment efficacy biomarkers to improve patient outcomes.

15.
Neuro Oncol ; 24(10): 1613-1646, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35762249

RESUMEN

Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Consenso , Humanos , Oncología Médica
16.
Cancers (Basel) ; 14(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35053576

RESUMEN

Unlike medulloblastoma (MB) in children, robust prospective trials have not taken place for older patients due to the low incidence of MB in adults and adolescent and young adults (AYA). Current MB treatment paradigms for older patients have been extrapolated from the pediatric experience even though questions exist about the applicability of these approaches. Clinical and molecular classification of MB now provides better prognostication and is being incorporated in pediatric therapeutic trials. It has been established that genomic alterations leading to activation of the sonic hedgehog (SHH) pathway occur in approximately 60% of MB in patients over the age of 16 years. Within this cohort, protein patched homolog (PTCH) and smoothened (SMO) mutations are commonly found. Among patients whose tumors harbor the SHH molecular signature, it is estimated that over 80% of patients could respond to SHH pathway inhibitors. Given the advances in the understanding of molecular subgroups and the lack of robust clinical data for adult/AYA MB, the Alliance for Clinical Trial in Oncology group developed the AMBUSH trial: Comprehensive Management of AYA and Adult Patients with Medulloblastoma or Pineal Embryonal Tumors with a Randomized Placebo Controlled Phase II Focusing on Sonic Hedgehog Pathway Inhibition in SHH Subgroup Patients (Adult & Adolescent MedulloBlastoma Using Sonic Hedgehog Trial). This trial will enroll patients 18 years of age or older with MB (any molecular subgroup and risk stratification) or pineal embryonal tumor. Patients will be assigned to one of three cohorts: (1) average risk non-SHH-MB, (2) average risk SHH-MB, and (3) high risk MB or pineal embryonal tumors. All patients will receive protocol-directed comprehensive treatment with radiation therapy and chemotherapy. Patients with SHH-MB in cohort 1 will be randomized to a smoothened inhibitor or placebo as maintenance therapy for one year.

17.
Front Radiol ; 2: 809373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37492687

RESUMEN

In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.

18.
Front Neuroimaging ; 1: 832512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37555156

RESUMEN

Automatic brain tumor segmentation is particularly challenging on magnetic resonance imaging (MRI) with marked pathologies, such as brain tumors, which usually cause large displacement, abnormal appearance, and deformation of brain tissue. Despite an abundance of previous literature on learning-based methodologies for MRI segmentation, few works have focused on tackling MRI skull stripping of brain tumor patient data. This gap in literature can be associated with the lack of publicly available data (due to concerns about patient identification) and the labor-intensive nature of generating ground truth labels for model training. In this retrospective study, we assessed the performance of Dense-Vnet in skull stripping brain tumor patient MRI trained on our large multi-institutional brain tumor patient dataset. Our data included pretreatment MRI of 668 patients from our in-house institutional review board-approved multi-institutional brain tumor repository. Because of the absence of ground truth, we used imperfect automatically generated training labels using SPM12 software. We trained the network using common MRI sequences in oncology: T1-weighted with gadolinium contrast, T2-weighted fluid-attenuated inversion recovery, or both. We measured model performance against 30 independent brain tumor test cases with available manual brain masks. All images were harmonized for voxel spacing and volumetric dimensions before model training. Model training was performed using the modularly structured deep learning platform NiftyNet that is tailored toward simplifying medical image analysis. Our proposed approach showed the success of a weakly supervised deep learning approach in MRI brain extraction even in the presence of pathology. Our best model achieved an average Dice score, sensitivity, and specificity of, respectively, 94.5, 96.4, and 98.5% on the multi-institutional independent brain tumor test set. To further contextualize our results within existing literature on healthy brain segmentation, we tested the model against healthy subjects from the benchmark LBPA40 dataset. For this dataset, the model achieved an average Dice score, sensitivity, and specificity of 96.2, 96.6, and 99.2%, which are, although comparable to other publications, slightly lower than the performance of models trained on healthy patients. We associate this drop in performance with the use of brain tumor data for model training and its influence on brain appearance.

19.
IEEE Trans Autom Sci Eng ; 19(3): 2203-2215, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37700873

RESUMEN

The automated capability of generating spatial prediction for a variable of interest is desirable in various science and engineering domains. Take Precision Medicine of cancer as an example, in which the goal is to match patients with treatments based on molecular markers identified in each patient's tumor. A substantial challenge, however, is that the molecular markers can vary significantly at different spatial locations of a tumor. If this spatial distribution could be predicted, the precision of cancer treatment could be greatly improved by adapting treatment to the spatial molecular heterogeneity. This is a challenging task because no technology is available to measure the molecular markers at each spatial location within a tumor. Biopsy samples provide direct measurement, but they are scarce/local. Imaging, such as MRI, is global, but it only provides proxy/indirect measurement. Also available are mechanistic models or domain knowledge, which are often approximate or incomplete. This paper proposes a novel machine learning framework to fuse the three sources of data/information to generate spatial prediction, namely the knowledge-infused global-local data fusion (KGL) model. A novel mathematical formulation is proposed and solved with theoretical study. We present a real-data application of predicting the spatial distribution of Tumor Cell Density (TCD)-an important molecular marker for brain cancer. A total of 82 biopsy samples were acquired from 18 patients with glioblastoma, together with 6 MRI contrast images from each patient and biological knowledge encoded by a PDE simulator-based mechanistic model called Proliferation-Invasion (PI). KGL achieved the highest prediction accuracy and minimum prediction uncertainty compared with a variety of competing methods. The result has important implications for providing individualized, spatially-optimized treatment for each patient.

20.
Sci Rep ; 11(1): 23202, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853344

RESUMEN

Lacunarity, a quantitative morphological measure of how shapes fill space, and fractal dimension, a morphological measure of the complexity of pixel arrangement, have shown relationships with outcome across a variety of cancers. However, the application of these metrics to glioblastoma (GBM), a very aggressive primary brain tumor, has not been fully explored. In this project, we computed lacunarity and fractal dimension values for GBM-induced abnormalities on clinically standard magnetic resonance imaging (MRI). In our patient cohort (n = 402), we connect these morphological metrics calculated on pretreatment MRI with the survival of patients with GBM. We calculated lacunarity and fractal dimension on necrotic regions (n = 390), all abnormalities present on T1Gd MRI (n = 402), and abnormalities present on T2/FLAIR MRI (n = 257). We also explored the relationship between these metrics and age at diagnosis, as well as abnormality volume. We found statistically significant relationships to outcome for all three imaging regions that we tested, with the shape of T2/FLAIR abnormalities that are typically associated with edema showing the strongest relationship with overall survival. This link between morphological and survival metrics could be driven by underlying biological phenomena, tumor location or microenvironmental factors that should be further explored.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA