Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurotrauma ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818807

RESUMEN

The kallikrein-kinin system is one of the first inflammatory pathways to be activated following traumatic brain injury (TBI) and has been shown to exacerbate brain edema formation in the acute phase through activation of bradykinin 2 receptors (B2R). However, the influence of B2R on chronic post-traumatic damage and outcome is unclear. In the current study, we assessed long-term effects of B2R-knockout (KO) after experimental TBI. B2R KO mice (heterozygous, homozygous) and wild-type (WT) littermates (n = 10/group) were subjected to controlled cortical impact (CCI) TBI. Lesion size was evaluated by magnetic resonance imaging up to 90 days after CCI. Motor and memory function were regularly assessed by Neurological Severity Score, Beam Walk, and Barnes maze test. Ninety days after TBI, brains were harvested for immunohistochemical analysis. There was no difference in cortical lesion size between B2R-deficient and WT animals 3 months after injury; however, hippocampal damage was reduced in B2R KO mice (p = 0.03). Protection of hippocampal tissue was accompanied by a significant improvement of learning and memory function 3 months after TBI (p = 0.02 WT vs. KO), whereas motor function was not influenced. Scar formation and astrogliosis were unaffected, but B2R deficiency led to a gene-dose-dependent attenuation of microglial activation and a reduction of CD45+ cells 3 months after TBI in cortex (p = 0.0003) and hippocampus (p < 0.0001). These results suggest that chronic hippocampal neurodegeneration and subsequent cognitive impairment are mediated by prolonged neuroinflammation and B2R. Inhibition of B2R may therefore represent a novel strategy to reduce long-term neurocognitive deficits after TBI.

2.
J Neurotrauma ; 41(3-4): 393-406, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37776177

RESUMEN

Brain edema formation is a key factor for secondary tissue damage after traumatic brain injury (TBI), however, the type of brain edema and the temporal profile of edema formation are still unclear. We performed free water imaging, a bi-tensor model based diffusion MRI analysis, to characterize vasogenic brain edema (VBE) and cytotoxic edema (CBE) formation up to 7 days after experimental TBI. Male C57/Bl6 mice were subjected to controlled cortical impact (CCI) or sham surgery and investigated by MRI 4h, 1, 2, 3, 5, and 7 days thereafter (n = 8/group). We determined mean diffusivity (MD) and free water (FW) in contusion, pericontusional area, ipsi- and contralateral brain tissue. Free (i.e., non-restricted) water was interpreted as VBE, restricted water as CBE. To verify the results, VBE formation was investigated by in-vivo 2-Photon Microscopy (2-PM) 48h after surgery. We found that MD and FW values decreased for 48h within the contusion, indicating the occurrence of CBE. In pericontusional tissue, MD and FW indices were increased at all time points, suggesting the formation of VBE. This was consistent with our results obtained by 2-PM. Taken together, CBE formation occurs for 48h after trauma and is restricted to the contusion, while VBE forms in pericontusional tissue up to 7 days after TBI. Our results indicate that free water magnetic resonance imaging may represent a promising tool to investigate vasogenic and cytotoxic brain edema in the laboratory and in patients.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Contusiones , Humanos , Masculino , Ratones , Animales , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Edema Encefálico/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Edema , Agua
3.
J Neurosci Methods ; 372: 109493, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35151669

RESUMEN

INTRODUCTION: Histology on fixed brain tissue is a key technique to investigate the pathophysiology of neurological disorders. Best results are obtained by perfusion fixation, however, multiple protocols are available and so far the optimal perfusion pressure (PP) for the preservation of brain tissue while also maintaining vascular integrity is not defined. Therefore, the aim of our study was to investigate the effect of different PPs on the cerebral vasculature and to define the PP optimal for the preservation of both vascular integrity and tissue fixation. MATERIAL AND METHODS: Male C57Bl6 mice, 8 weeks old, were perfused with PPs of 50/125/300 mmHg (series I) or 50/100/150/300 mmHg (series II). In series I, vascular integrity, e.g. BBB permeability, vessel diameter, and occurrence of vasospasms were investigated by spectrophotometry, light-sheet and 2-photon microscopy, respectively. In series II, we investigated vascular and neuronal artifacts and the occurrence of hemorrhage or microthrombi by light microscopy. RESULTS: While a PP below the physiological systolic blood pressure results in the collapse of parenchymal vessels and formation of microvasospasms and microclots, a PP above the physiological systolic blood pressure dilates cerebral vessels, induces microvasospasms and disrupts the BBB. In terms of tissue integrity, our results confirm that higher PPs lead to fewer artifacts such as dark neurons or perivascular courts. CONCLUSION: Our study demonstrates that the PP critically affects both vascular and tissue integrity in brain tissue preserved by perfusion fixation. A PP between 125 and 150 mmHg is optimal for the preservation of the cerebral vasculature and neuronal structures.


Asunto(s)
Encéfalo , Neuronas , Animales , Barrera Hematoencefálica , Encéfalo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Perfusión/métodos , Fijación del Tejido/métodos
4.
J Neurotrauma ; 38(11): 1572-1584, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33779289

RESUMEN

Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.


Asunto(s)
Canales Iónicos Sensibles al Ácido/deficiencia , Daño Encefálico Crónico/etiología , Daño Encefálico Crónico/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Animales , Daño Encefálico Crónico/psicología , Lesiones Traumáticas del Encéfalo/psicología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Actividad Motora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA