Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 12(3): 2477-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22755077

RESUMEN

A new rod-like thermotropic liquid crystalline polyester (TLCP) material and its nanocomposites based on different concentrations of graphene were synthesized by in-situ high-temperature solution polymerization. The resulting nanocomposites were characterized using XRD, microscopic analysis (POM, SEM, and TEM), spectroscopic analysis (FT-IR, UV-Vis, and fluorescence), and thermal analysis (TGA and DSC). The XRD and POM methods showed that the composite materials exhibited only the nematic phase. The TEM images revealed that the graphene were distributed in the polymer with sizes ranging from 100 to 200 nm. The absorption spectroscopy data showed that the electronic properties of graphene were mostly retained without damaging their two-dimensional electronic properties, together with the analysis of the maximum absorption spectrum and concentration of the composites in terms of the Lambert-Beer law. The fluorescence from the TLCP moiety was almost completely quenched and red shifted by graphene, indicating that the linkage mode facilitated effective energy and electron transfer between the rod-like TLCP and the extended pi-system of graphene. Therefore, this novel nanocomposite material exhibits excellent thermal properties based on the thermogravimetric analysis.

2.
J Nanosci Nanotechnol ; 11(6): 5018-23, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21770137

RESUMEN

A series of nanocomposites containing multi-walled carbon nanotubes (MWNTs) and terephthaloyl-di-p-oxybenzoyl chloride-triethylene glycol copolyester (T-T) were prepared by in-situ high-temperature solution polycondensation. The liquid crystalline properties and thermal stability of the resulted MWNTs/T-T nanocomposites were investigated by wide-angle X-ray diffraction (WAXD), polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA), respectively. The results showed that MWNT doping at a low concentration improved the thermal stability of T-T matrix and expanded the nematic temperature range without largely changing its conformation, making it more suitable for processing. The dispersion of MWNTs and interfacial interactions between the thermotropic liquid crystalline polymer (TLCP) molecules and the carbon nanotubes (CNTs) were investigated by scanning electron microscopy (SEM) and optical spectroscopies. The UV-vis spectroscopy and fluorescence spectra supported a strong pi-pi* interaction between the polymer and the nanotube.


Asunto(s)
Cristales Líquidos/química , Nanocompuestos/química , Nanotubos de Carbono/química , Poliésteres/química , Rastreo Diferencial de Calorimetría , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA