Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Nutr ; 11: 1390143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962443

RESUMEN

Background: Limited research has explored the association between dietary soy products and colorectal polyps and adenomas, with insufficient attention given to cooking methods and subtypes of polyps. This study aimed to comprehensively assess the relationship between soy intake, its cooking methods, and the risk of colorectal polyps and adenomas within a high-incidence population of colorectal cancer (CRC) in China. Methods: Data were derived from 14,903 participants aged 40-80 years, enrolled in the extended Lanxi Pre-colorectal Cancer Cohort (LP3C) between March 2018 and December 2022. This cross-sectional study is based on the participants' baseline information. Long-term dietary information was collected through a validated food frequency questionnaire (FFQ), and colorectal polyps and adenomas were identified through electronic colonoscopy. Employing multivariate logistic regression, results were expressed as odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs). Results: 4,942 cases of colorectal polyps and 2,678 cases of adenomas were ascertained. A significant positive association was found between total soy intake and the occurrence of polyps/adenomas. Considering cooking methods, a notable increase in polyp risk was associated with the consumption of fried soys while no association was detected for boiled or marinated soys. Furthermore, total soy intake demonstrated associations with large and multiple polyps, polyps Yamade-typed less than II, and polyps across all anatomical subsites. Conclusion: Within the high-risk CRC population in China, increased soy product intake was linked to a higher risk of polyps, primarily attributed to the consumption of fried soys. This suggests that modifying cooking methods to avoid fried soys may serve as a preventive strategy for colorectal polyps.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38963782

RESUMEN

Background: Long noncoding RNAs (lncRNAs) contribute to the initiation and progression of gastric cancer (GC). The purpose of this study is to examine the potential role of lncRNA colorectal neoplasia differentially expressed (CRNDE) in modulating the expression of migration and invasion enhancer 1 (MIEN1) through the suppression of miR-136-5p in GC. Methods: The biological roles of CRNDE, miR-136-5p, and MIEN1 in GC were assessed both in laboratory settings and through the examination of clinical samples. Results: CRNDE was found to be significantly increased in GC tissues, and this upregulation was associated with an unfavorable prognosis of GC patients. In vitro experiments showed that inhibiting cell growth and migration, along with promoting apoptosis in GC cells, could be achieved by either disabling CRNDE or MIEN1, or by increasing the expression of miR-136-5p. MIEN1 is a specific recipient of miR-136-5p, and the anticancer effects of miR-136-5p can be counteracted by the increased expression of MIEN1. Through the examination of clinical specimens, it has been observed that there is a significant positive correlation between the expression of MIEN1 and CRNDE. In contrast, miR-136-5p expression in GC tissues shows a negative correlation. Conclusion: A previously unexplored therapeutic target for GC involves the CRNDE/miR-136-5p/MIEN1 signal transduction cascade.

3.
Water Res ; 261: 122001, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38964215

RESUMEN

Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.

4.
Fundam Res ; 4(3): 471-483, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933192

RESUMEN

The environmental stability of infectious viruses in the laboratory setting is crucial to the transmission potential of human respiratory viruses. Different experimental techniques or conditions used in studies over the past decades have led to diverse understandings and predictions for the stability of viral infectivity in the atmospheric environment. In this paper, we review the current knowledge on the effect of simulated atmospheric conditions on the infectivity of respiratory viruses, mainly focusing on influenza viruses and coronaviruses, including severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. First, we summarize the impact of the experimental conditions on viral stability; these involve the methods of viral aerosol generation, storage during aging and collection, the virus types and strains, the suspension matrixes, the initial inoculum volumes and concentrations, and the drying process. Second, we summarize and discuss the detection methods of viral infectivity and their disadvantages. Finally, we integrate the results from the reviewed studies to obtain an overall understanding of the effects of atmospheric environmental conditions on the decay of infectious viruses, especially aerosolized viruses. Overall, this review highlights the knowledge gaps in predicting the ability of viruses to maintain infectivity during airborne transmission.

5.
PLoS One ; 19(6): e0304712, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38923995

RESUMEN

The working conditions of heavy-duty trucks are very complicated as the diesel shaking and resonance problems, which causes weld tears, separators to fall off, and other failures occur. Through experiments and finite element simulation, the natural frequency and vibration mode of a given 400 L diesel tank were calculated to study the influences of structural parameters such as the fill ratio (0.1-0.9), the number of baffle plates (0, 1, 2), the spacing of the plates (240 mm, 400 mm, 560 mm) and the aperture (38 mm, 78 mm, 118 mm) on the modal parameters with the wet mode method. The results of the hammering mode test and the simulation modal analysis agree well with the maximum error is 4.8%; the natural frequency of the diesel tank will increase with fill ratio decrease; the increase of the baffle plate number (0, 1, 2) can effectively increase the first-order natural frequency of the diesel tank, but the change of the natural frequency is not obvious on the higher order; the higher plates spacing has a smaller natural frequency; increasing the aperture will highly increase the natural frequency, 188 mm has better vibration safety.


Asunto(s)
Vehículos a Motor , Vibración , Vibración/efectos adversos , Gasolina , Humanos , Diseño de Equipo
6.
Adv Mater ; : e2407609, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875710

RESUMEN

Current high-efficiency organic solar cells (OSCs) are generally fabricated in an inert atmosphere that limits their real-world scalable manufacturing, while the efficiencies of air-processed OSCs lag far behind. The impacts of ambient factors on solar cell fabrication remain unclear. In this work, the effects of ambient factors on cell fabrication are systematically investigated, and it is unveiled that the oxidation and doping of organic light absorbers are the dominant reasons causing cell degradation when fabricated in air. To address this issue, a new strategy for fabricating high-performance air-processed OSCs by introducing an antioxidant additive (4-bromophenylhydrazine, BPH) into the precursor solutions, is developed. BPH can effectively inhibit oxygen infiltration from the ambient to the photoactive layer and suppress trap formation caused by oxidation. Compared with conventional air-processed OSCs, this strategy remarkably increases the cell power conversion efficiency (PCE) from 16.7% to 19.3% (independently certified as 19.2%), representing the top value of air-processed OSCs. Furthermore, BPH significantly improves the operational stability of the cells in air by two times with a T80 lifetime of over 500 h. This study highlights the potential of using antioxidant additives to fabricate high-efficiency and stable OSCs in air, significantly promoting the industrialization of OSCs.

7.
Environ Sci Ecotechnol ; 21: 100423, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38693993

RESUMEN

Evaluating the health of river surface water is essential, as rivers support significant biological resources and serve as vital drinking water sources. While the Water Quality Index (WQI) is commonly employed to evaluate surface water quality, it fails to consider biodiversity and does not fully capture the ecological health of rivers. Here we show a comprehensive assessment of the ecological health of surface water in the lower Yangtze River (LYR), integrating chemical and biological metrics. According to traditional WQI metrics, the LYR's surface water generally meets China's Class II standards. However, it also contains 43 high-risk emerging contaminants; nitrobenzenes are found at the highest concentrations, representing 25-90% of total detections, while polycyclic aromatic hydrocarbons present the most substantial environmental risks, accounting for 81-93% of the total risk quotient. Notably, the plankton-based index of biological integrity (P-IBI) rates the ecological health of the majority of LYR water samples (59.7%) as 'fair', with significantly better health observed in autumn compared to other seasons (p < 0.01). Our findings suggest that including emerging contaminants and P-IBI as additional metrics can enhance the traditional WQI analysis in evaluating surface water's ecological health. These results highlight the need for a multidimensional assessment approach and call for improvements to LYR's ecological health, focusing on emerging contaminants and biodiversity rather than solely on reducing conventional indicators.

8.
Adv Mater ; : e2402785, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777327

RESUMEN

Organic semiconductors (e.g., PCBM and IDIC) frequently serve as interface passivants for perovskite solar cells (PSCs) due to their beneficial passivation effects on perovskite interfaces. However, their passivation to the interiors of perovskite films is greatly limited by their poor solubility in polar solvents and compatibility issues. Here the facile synthesis of organic semiconductor nanoparticle (NP) passivants that readily disperse in perovskite inks is reported. Adding these NPs into perovskite inks not only modulates perovskite crystallization, improves film quality and conductivity, but also achieves holistic bulk film passivation. Consequently, blade-coated p-i-n PSCs with ICBA NPs achieve an impressive efficiency of 25.1% (independently certified as 25.0%), the highest reported value for air-processed PSCs irrespective of fabrication methods or device structures. This work develops a novel approach for effective and holistic perovskite passivation by converting conventional passivants to perovskite-compatible NPs, paving the way for more efficient and stable perovskite solar devices.

9.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732829

RESUMEN

In 3D microsphere tracking, unlike in-plane motion that can be measured directly by a microscope, axial displacements are resolved by optical interference or a diffraction model. As a result, the axial results are affected by the environmental noise. The immunity to environmental noise increases with measurement accuracy and the signal-to-noise ratio (SNR). In compound digital holography microscopy (CDHM)-based measurements, precise identification of the tracking marker is critical to ensuring measurement precision. The reconstruction centering method (RCM) was proposed to suppress the drawbacks caused by installation errors and, at the same time, improve the correct identification of the tracking marker. The reconstructed center is considered to be the center of the microsphere, rather than the center of imaging in conventional digital holographic microscopy. This method was verified by simulation of rays tracing through microspheres and axial moving experiments. The axial displacements of silica microspheres with diameters of 5 µm and 10 µm were tested by CDHM in combination with the RCM. As a result, the SNR of the proposed method was improved by around 30%. In addition, the method was successfully applied to axial displacement measurements of overlapped microspheres with a resolution of 2 nm.

10.
J Am Chem Soc ; 146(21): 14369-14385, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38718351

RESUMEN

Supercapacitors (SCs) are some of the most promising energy storage devices, but their low energy density is one main weakness. Over the decades, superior electrode materials and suitable electrolytes have been widely developed to enhance the energy storage ability of SCs. Particularly, constructing asymmetric supercapacitors (ASCs) can extend their electrochemical stable voltage windows (ESVWs) and thus achieve high energy density. However, only full utilization of the electrochemical stable potential windows (ESPWs) of both positive and negative electrodes can endow the ASC devices with a maximum ESVW by using a suitable mass-ratio between two electrodes (the mass-balancing). Nevertheless, insufficient attention is directed to mass-balancing, and even numerous misunderstandings and misuses have appeared. Therefore, in this Perspective, we focus on the mass-balancing: summarize theoretic basis of the mass-balancing, derive relevant relation equations, analyze and discuss the change trends of the specific capacitance and energy density of ASCs with mass-ratios, and finally recommend some guidelines for the normative implementation of the mass-balancing. Especially, the issues related to pseudocapacitive materials, hybrid devices, and different open circuit potentials (OCPs) of the positive and negative electrodes in the mass-balancing are included and emphasized. These analyses and guidelines can be conducive to understanding and performing mass-balancing for developing high-performance SCs.

11.
Nanotechnology ; 35(30)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38651768

RESUMEN

Selective and sensitive detection of volatile organic compounds (VOCs) holds paramount importance in real-world applications. This study proposes an innovative approach utilizing a single ReS2field-effect transistor (FET) characterized by distinct in-plane anisotropy, specifically tailored for VOC recognition. The unique responses of ReS2, endowed with robust in-plane anisotropic properties, demonstrate significant difference along thea-axis andb-axis directions when exposed to four kinds of VOCs: acetone, methanol, ethanol, and IPA. Remarkably, the responses of ReS2were significantly magnified under ultraviolet (UV) illumination, particularly in the case of acetone, where the response amplified by 10-15 times and the detection limit decreasing from 70 to 4 ppm compared to the dark conditions. Exploiting the discernible variances in responses along thea-axis andb-axis under both UV and dark conditions, the data points of acetone, ethanol, methanol and IPA gases were clearly separated in the principal component space without any overlap through principal component analysis, indicating that the single ReS2FET has a high ability to distinguish various gas species. The exploration of anisotropic sensing materials and light excitation strategies can be applied to a broad range of sensing platforms based on two-dimensional materials for practical applications.

12.
Ecotoxicol Environ Saf ; 276: 116307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593497

RESUMEN

In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.


Asunto(s)
Sulfuro de Hidrógeno , Plantas , Transducción de Señal , Tiocianatos , Sulfuro de Hidrógeno/metabolismo , Tiocianatos/metabolismo , Plantas/metabolismo , Gasotransmisores/metabolismo , Cloroplastos/metabolismo , Inactivación Metabólica
13.
Eur J Nutr ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622294

RESUMEN

PURPOSE: The available evidence regarding the role of fruit and vegetable consumption in the development of colorectal polyps remains inconclusive, and there is a lack of data on different histopathologic features of polyps. We aimed to evaluate the associations of fruit and vegetable consumption with the prevalence of colorectal polyps and its subtypes in a high-risk population in China. METHODS: We included 6783 Chinese participants aged 40-80 years who were at high risk of colorectal cancer (CRC) in the Lanxi Pre-colorectal Cancer Cohort (LP3C). Dietary information was obtained through a validated food-frequency questionnaire (FFQ), and colonoscopy screening was used to detect colorectal polyps. Dose-response associations of fruit and vegetable intake with the prevalence of polyps were calculated using multivariate-adjusted regression models, which was reported as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS: 2064 cases of colorectal polyps were ascertained in the LP3C during 2018-2019. Upon multivariable adjustments, including the diet quality, fruit consumption was inversely associated with the prevalence of polyps (P trend = 0.02). Participants in the highest tertile of fruit intake had a 25% lower risk (OR: 0.75; 95% CI 0.62‒0.92) compared to non-consumers, while vegetable consumption had no significant association with polyp prevalence (P trend = 0.86). In terms of colorectal histopathology and multiplicity, higher fruit intake was correlated with 24, 23, and 33% lower prevalence of small polyps (OR: 0.76; 95% CI 0.62‒0.94; P trend = 0.05), single polyp (OR: 0.77; 95% CI 0.62‒0.96; P trend = 0.04), and distal colon polyps (OR: 0.67; 95% CI 0.51‒0.87; P trend = 0.003), respectively. CONCLUSIONS: Fresh fruit is suggested as a protective factor to prevent colorectal polyps in individuals at high risk of CRC, and should be underscored in dietary recommendations, particularly for high-risk populations.

14.
Opt Express ; 32(7): 12318-12339, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571058

RESUMEN

The increasing risk posed by space debris highlights the need for accurate localization techniques. Spaceborne single photon Lidar (SSPL) offers a promising solution, overcoming the limitations of traditional ground-based systems by providing expansive coverage and superior maneuverability without being hindered by weather, time, or geographic constraints. This study introduces a novel approach leveraging non-parametric Bayesian inference and the Dirichlet process mixture model (DPMM) to accurately determine the distance of space debris in low Earth orbit (LEO), where debris exhibits nonlinear, high dynamic motion characteristics. By integrating extended Kalman filtering (EKF) for range gating, our method captures the temporal distribution of reflected photons, employing Markov chain Monte Carlo (MCMC) for iterative solutions. Experimental outcomes demonstrate our method's superior accuracy over conventional statistical techniques, establishing a clear correlation between radial absolute velocity and ranging error, thus significantly enhancing monostatic space debris localization.

15.
Cell Tissue Res ; 396(3): 343-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492000

RESUMEN

Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.


Asunto(s)
Dentina , Ratones Noqueados , Receptores de Calcitriol , Animales , Receptores de Calcitriol/metabolismo , Dentina/metabolismo , Ratones , Biglicano/metabolismo , Cicatrización de Heridas , Ratones Endogámicos C57BL , Decorina/metabolismo , Calcificación Fisiológica
16.
Psychiatry Res Neuroimaging ; 341: 111810, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38555800

RESUMEN

Late-life depression is one of the most damaging mental illnesses, disrupting the normal lives of older people by causing chronic illness and cognitive impairment. Patients with late-life depression, accompanied by changes in appetite, insomnia, fatigue and guilt, are more likely to experience irritability, anxiety and somatic symptoms. It increases the risk of suicide and dementia and is a major challenge for the public health systems. The current clinical assessment, identification and effectiveness assessment of late-life depression are primarily based on history taking, mental status examination and scale scoring, which lack subjectivity and precision. Functional near-infrared spectroscopy is a rapidly developing optical imaging technology that objectively reflects the oxygenation of hemoglobin in different cerebral regions during different tasks and assesses the functional status of the cerebral cortex. This article presents a comprehensive review of the assessment of functional near-infrared spectroscopy technology in assessing depressive symptoms, social functioning, and cognitive functioning in patients with late-life depression. The use of functional near-infrared spectroscopy provides greater insight into the neurobiological mechanisms underlying depression and helps to assess these three aspects of functionality in depressed patients. In addition, the study discusses the limitations of previous research and explores potential advances in the field.


Asunto(s)
Depresión , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Depresión/metabolismo , Depresión/psicología , Depresión/diagnóstico por imagen , Disfunción Cognitiva/psicología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Biomarcadores/análisis , Biomarcadores/metabolismo , Cognición/fisiología
17.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461553

RESUMEN

Nanofluids have excellent lubrication and high thermal conductivity. However, the agglomeration and sedimentation produced by the large surface energy of nanoparticles in base liquid threaten the long-term dispersion stability and impact the wide application of nanofluid. In this work, based on the self-assemble behavior and continuous network structure formed by low molecular weight organic gelator, the uniform clusters were formed through regulating the kinetics behavior in the gelling process. The dragging effect was demonstrated by oleic acid - sodium dodecyl sulfate (OA-SDS) bicomponent gelator and graphene oxide (GO) nanosheets. The results showed that GO nanofluids dispersed by OA-SDS were stable for more than 12 months. The well-dispersed GO nanofluid exhibited better anti-friction and anti-wear properties under both immersion and electrostatic minimum quantity lubrication conditions. Moreover, the lower contact angle, surface tension and droplet size of nanofluids after charging improved the wettability on the frictional interface. The GO adsorption film formed on the friction interface protected the tribochemical reaction film of iron oxide and prevented the occurrence of sintering of base oil.

18.
Front Plant Sci ; 15: 1225031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463569

RESUMEN

Background: Biochar application has become one of the most potential tools to improve soil fertility and plant growth for sustainable and eco-friendly agriculture. However, both positive and negative effects of biochar application have been recorded on plant growth and soil fertility. Methods: This study investigated the impact of different application rates (0, 600, 900, 1200, and 1800 kg/ha) of biochar on the soil nutrient contents, accumulation of nutrients and dry matter in different plant parts, and growth of flue-cured tobacco plants under field conditions. Results: Results demonstrated that soil organic carbon pool and carbon/nitrogen ratio were increased proportionally with the increasing dosage of biochar, 25.54 g/kg and 14.07 g/kg compared with control 17 g/kg and 10.13 g/kg, respectively. The contents of soil total nitrogen were also significantly increased after biochar application in the middle (1.77 g/kg) and late-growth (1.54 g/kg) stages of flue-cured tobacco than in control (1.60 g/kg and 1.41 g/kg, respectively). The contents of soil nitrate nitrogen were also higher under low (600 and 900 kg/ha) application rates of biochar and reduced when higher (1200 and 1800 kg/ha) dosages of biochar were applied. However, it was observed that varying application rates of biochar had no impact on soil ammonium nitrogen content during the growth period of flue-cured tobacco plants. The nutrient accumulation (N, P, K) in different parts of flue-cured tobacco plants was significantly increased under a low application rate of biochar, which enhanced the soil and plant analyzer development values, effective leaves number, growth, dry matter accumulation, and leaf yield of flue-cured tobacco. In contrast, the high biochar application rate (1200 and 1800 kg/ha) negatively impacted nutrient accumulation and growth of flue-cured tobacco. Conclusion: Conclusively, the optimum application of biochar (600 and 900 kg/ha) is beneficial for plant growth, soil fertility, accumulation of nutrients, and dry matter in different plant parts. However, excessive biochar application (> 900 kg/ha) could inhibit flue-cured tobacco plant growth. This study provides a theoretical foundation for biochar application in tobacco and other crop production to obtain agricultural sustainability and economic stability.

19.
Int Wound J ; 21(3): e14831, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484730

RESUMEN

Neoadjuvant chemoimmunotherapy is becoming an increasingly important part of the management of lung cancer to facilitate surgical resection. This study aimed to summarize the treatment-related adverse events (TRAEs) and wound complications of neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC). Eligible studies of neoadjuvant chemoimmunotherapy for NSCLC were identified from PubMed, Embase and Web of Science. The endpoints mainly included TRAEs and wound complications. Stata18 software was used for statistical analysis with p < 0.05 considered statistically significant. Twenty studies including a total of 1072 patients were eligible for this study. Among the patients who received neoadjuvant chemoimmunotherapy, the pooled prevalence of any grade TRAEs was 77% (95% confidence interval [CI] [0.64-0.86]), grade 1-2 TRAEs was 77% (95% CI [0.58-0.89]) and grade ≥3 TRAEs was 26% (95% CI [0.16-0.38]). Surgery-related complications rate was 22% (95% CI [0.14-0.33]). Among the wound complications, the pooled rate of air leakage was 10% (95% CI [0.04-0.23]), pulmonary/wound infection was 8% (95% CI [0.05-0.13]), bronchopleural fistula was 8% (95% CI [0.02-0.27]), bronchopulmonary haemorrhage was 3% (95% CI [0.01-0.05]), pneumonia was 5% (95% CI [0.02-0.10]), pulmonary embolism was 1% (95% CI [0.01-0.03]), pleural effusion was 7% (95% CI [0.03-0.14]) and chylothorax was 4% (95% CI [0.02-0.09]). Overall, neoadjuvant chemoimmunotherapy in NSCLC results a high incidence of grade 1-2 TRAEs but a low risk of increasing the incidence of ≥3 grade TRAEs and wound complications. These results need to be confirmed by more large-scale prospective randomized controlled trials and studies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Terapia Neoadyuvante/efectos adversos , Estudios Prospectivos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , Inmunoterapia/efectos adversos
20.
J Environ Sci (China) ; 141: 16-25, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408817

RESUMEN

Azole fungicides (AFs) play an important role in the prevention and treatment of fungal diseases in agricultural crops. However, limited studies are addressing the fate and ecological risk of AFs in the urban water cycle at a large watershed scale. To address this gap, we investigated the spatiotemporal distribution and ecological risk of twenty AFs in the lower reaches of the Yangtze River across four seasons. Carbendazim (CBA), tebuconazole (TBA), tricyclazole (TCA), and propiconazole (PPA) were found to be the dominant compounds. Their highest concentrations were measured in January (188.3 ng/L), and November (2197.1 ng/L), July (162.0 ng/L), and November (1801.9 ng/L), respectively. The comparison between wastewater treatment plants (WWTPs) effluents and surface water suggested that industrial WWTPs are major sources of AFs in the Yangtze River. In particular, TBA and PPA were found to be the most recalcitrant AFs in industrial WWTPs, while difenoconazole (DFA) was found to be the most potent pollutant in municipal WWTPs, with an average removal rate of less than 60%. The average risk quotient (RQ) for the entire AFs was 6.45 in the fall, which was higher than in January (0.98), April (0.61), and July (0.40). This indicates that AFs in surface water posed higher environmental risks during the dry season. Additionally, the exposure risk of AFs via drinking water for sensitive populations deserves more attention. This study provides benchmark data on the occurrence of AFs in the lower reaches of the Yangtze River, and offers suggestions for better reduction of AFs.


Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Ríos , Azoles , Monitoreo del Ambiente , Ciclo Hidrológico , Agua , China , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA