Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(21): 33830-33841, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859154

RESUMEN

This paper proposes a flexible and accurate dynamic quantitative phase imaging (QPI) method using single-shot transport of intensity equation (TIE) phase retrieval achieved by division of focal plane (DoFP) polarization imaging technique. By exploiting the polarization property of the liquid crystal spatial light modulator (LC-SLM), two intensity images of different defocus distances contained in orthogonal polarization directions can be generated simultaneously. Then, with the help of the DoFP polarization imaging, these images can be captured with single exposure, enabling accurate dynamic QPI by solving the TIE. In addition, our approach gains great flexibility in defocus distance adjustment by adjusting the pattern loaded on the LC-SLM. Experiments on microlens array, phase plate, and living human gastric cancer cells demonstrate the accuracy, flexibility, and dynamic measurement performance for various objects. The proposed method provides a simple, flexible, and accurate approach for real-time QPI without sacrificing the field of view.

2.
Opt Express ; 31(16): 25635-25647, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710445

RESUMEN

We propose a fast and robust method for calibrating Spatial Light Modulators (SLMs) based on polarization phase-shifting interferometry. Our method effectively calibrates the SLM by addressing both the static aberration and nonlinear phase response, utilizing specially designed gray images loaded sequentially onto the SLM. Notably, we introduce a novel kinoform that effectively eliminates the influence of tilt phase shift between two shots of the polarization camera. This results in a highly accurate phase aberration map and phase modulation curve with exceptional stability, making it an ideal method to calibrate the SLM with exceptional efficiency and precision in real applications.

3.
J Colloid Interface Sci ; 628(Pt B): 946-954, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36041246

RESUMEN

The photoelectrocatalytic (PEC) water splitting efficiency of semiconductor photoelectrodes is mainly limited by the effective separation and transfer of photogenerated charges. Zinc indium sulfide-cuprous oxide (ZnIn2S4-Cu2O) p-n heterojunction is constructed to enhance the PEC properties of ZnIn2S4. The nickel hydroxide iron oxide (NiFeOOH) layer on the surface of the heterojunction can be used as a hole depletion layer under the induction of plasmon resonance of the most surface silver (Ag) (the holes transferred from Cu2O valence band to NiFeOOH layer can be excited by Ag to produce hot electron consumption, which makes the last remaining hot holes participate in the water oxidation reaction) to further promote the carrier separation and transfer. The results exhibit that ZnIn2S4/Cu2O/NiFeOOH/Ag photoelectrode with dramatically enhanced photocurrent density of 1.22 mA/cm2 at 1.23 V versus the reversible hydrogen electrode (VRHE), which is 9.4 times higher than the pure ZnIn2S4. This work provides a promising concept to design photoelectrodes efficiently in PEC water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA