Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(24): e2207968, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36899492

RESUMEN

Femtosecond lasers enable flexible and thermal-damage-free ablation of solid materials and are expected to play a critical role in high-precision cutting, drilling, and shaping of electronic chips, display panels, and industrial parts. Although the potential applications are theoretically predicted, true 3D nano-sculpturing of solids such as glasses and crystals, has not yet been demonstrated, owing to the technical challenge of negative cumulative effects of surface changes and debris accumulation on the delivery of laser pulses and subsequent material removal during direct-write ablation. Here, a femtosecond laser-induced cavitation-assisted true 3D nano-sculpturing technique based on the ingenious combination of cavitation dynamics and backside ablation is proposed to achieve stable clear-field point-by-point material removal in real time for precise 3D subtractive fabrication on various difficult-to-process materials. As a result, 3D devices including free-form silica lenses, micro-statue with vivid facial features, and rotatable sapphire micro-mechanical turbine, all with surface roughness less than 10 nm are readily produced. The true 3D processing capability can immediately enable novel structural and functional micro-nano optics and non-silicon micro-electro-mechanical systems based on various hard solids.

2.
Nanoscale ; 15(11): 5494-5498, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36853238

RESUMEN

Patterned quantum dots (QDs) and perovskites have attracted a great deal of attention in the fabrication of optoelectronic device arrays for transistors, image sensors and displays. However, the resolution of current patterning technologies is insufficient for nanopatterned QDs and perovskites to be integrated in advanced optoelectronic and photonic applications. Herein, we demonstrate a femtosecond laser regulatory focus ablation (FsLRFA) patterning technique of a fluorescent film involving both semiconductor core-shell QDs and perovskite up to 1/10th of the scale of the diffraction limit. Annular lines with a 200 nm-width are obtained after the irradiation of the femtosecond laser. Moreover, the combination of ablated different geometries enables the laser focal spot as brushes for FsLRFA patterning technology to fabricate delicate and programmable patterns on the fluorescent film. This technology with nanoscale resolution and patterning capability paves the road toward highly integrated applications based on QDs and perovskites.

3.
Opt Lett ; 46(3): 536-539, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528403

RESUMEN

We systematically studied femtosecond laser-inscribed self-organized nanogratings and geometric phase elements such as a polarization diffraction focusing lens and Q-plate in sapphire crystal. Besides the void structures observed in the focus, nanogratings with periods of 150~300 nm were observed, depending on a nanoslit that took the role of a seeding effect by localized light field enhancement. The non-polarized refractive index change and birefringence were measured with values around 1∼2×10-3 and 6×10-4, respectively. Based on the laser-inscribed form birefringence, a geometric phase lens and Q-plate were successfully demonstrated in sapphire with high imaging and a focusing effect. We expect that our findings may promote the understanding of laser-induced nanogratings in bulk and potential applications in geometric phase elements.

4.
Opt Lett ; 45(11): 3058, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479458

RESUMEN

This publisher's note contains corrections to Opt. Lett.45, 2580 (2020).OPLEDP0146-959210.1364/OL.391232.

5.
Opt Lett ; 45(9): 2580-2583, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356821

RESUMEN

Here a continuous axial-spiral phase microplate (CAsPP), based on combining a logarithmic axicon and a spiral phase plate, was proposed for generating high-quality higher-order Bessel vortex beams. The novel optical component implemented via femtosecond laser direct writing possesses compact geometry and unique optical properties. The CAsPP with a diameter of 80 µm possesses a controllable long focus ranging from 50 to 600 µm and exhibits a good self-healing ability after free transmission of about 45 µm. Unique optical properties were demonstrated in both experiments and simulations, which were well matched to each other. This Letter provides new opportunities for applications in integrated optics, optical trapping, laser machining, and information reconstruction.

6.
ACS Appl Mater Interfaces ; 12(9): 10107-10117, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32046483

RESUMEN

Natural compound eyes provide the inspiration for developing artificial optical devices that feature a large field of view (FOV). However, the imaging ability of artificial compound eyes is generally based on the large number of ommatidia. The lack of a tunable imaging mechanism significantly limits the practical applications of artificial compound eyes, for instance, distinguishing targets at different distances. Herein, we reported zoom compound eyes that enable variable-focus imaging by integrating a deformable poly(dimethylsiloxane) (PDMS) microlens array (MLA) with a microfluidic chamber. The thin and soft PDMS MLA was fabricated by soft lithography using a hard template prepared by a combined technology of femtosecond laser processing and wet etching. As compared with other mechanical machining strategies, our combined technology features high flexibility, efficiency, and uniformity, as well as designable processing capability, since the size, distribution, and arrangement of the ommatidia can be well controlled during femtosecond laser processing. By tuning the volume of water injected into the chamber, the PDMS MLA can deform from a planar structure to a hemispherical shape, evolving into a tunable compound eye of variable FOV up to 180°. More importantly, the tunable chamber can functionalize as the main zoom lens for tunable imaging, which endows the compound eye with the additional capability of distinguishing targets at different distances. Its focal length can be turned from 3.03 mm to infinity with an angular resolution of 3.86 × 10-4 rad. This zoom compound eye combines the advantages of monocular eyes and compound eyes together, holding great promise for developing advanced micro-optical devices that enable large FOV and variable-focus imaging.


Asunto(s)
Ojo Compuesto de los Artrópodos/química , Dispositivos Ópticos , Animales , Biomimética , Ojo Compuesto de los Artrópodos/fisiología , Diseño de Equipo , Ojo Artificial , Insectos/fisiología , Rayos Láser
7.
Opt Lett ; 45(3): 636-639, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004271

RESUMEN

We report fabrication of silica convex microlens arrays with controlled shape, size, and curvature by femtosecond laser direct writing. A backside etching in dye solution was utilized for laser machining high-fidelity control of material removal and real-time surface cleaning from ablation debris. Thermal annealing was applied to reduce surface roughness to 3 nm (rms). The good optical performance of the arrays was confirmed by focusing and imaging tests. Complex 3D micro-optical elements over a footprint of $ 100 \times 100\;\unicode{x00B5}{{\rm m}^2} $100×100µm2 were ablated within 1 h (required for practical applications). A material removal speed of $ 120\;\unicode{x00B5}{{\rm m}^3}/{\rm s} $120µm3/s ($ 6 \times {10^5} \;{{\rm nm}^3}/{\rm pulse} $6×105nm3/pulse) was used, which is more than an order of magnitude higher compared to backside etching using a mask projection method. The method is applicable for fabrication of micro-optical components on transparent hard materials.

8.
Opt Lett ; 42(19): 3832-3835, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957140

RESUMEN

Herein, we report a kinoform phase-type lens (KPL), which is fabricated by femtosecond (fs)-laser-induced refractive index change inside sapphire crystal. By fabricating volume phase gratings in sapphire and measuring the energy ratio of the grating's first and second diffraction orders, the refractive index change in sapphire induced by fs-laser modification was obtained. Then a four-level KPL was designed and fabricated inside sapphire following the experimentally established scaling of the refractive index change and fs-laser power. Importantly, the KPL has unique UV focusing and imaging capability as well as a stable optical performance in different refractive index environments. The KPL embedded in sapphire has the same optical performance after a high-temperature (1050°C) annealing for 30 min. The KPLs in sapphire have great potential to increase light extraction efficiency in GaN blue-UV light-emitting diodes and can be used in micro-optical sensor applications in chemically harsh and high-temperature environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA