Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Neurol ; 15: 1359955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846037

RESUMEN

Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder characterized by deficits in motor skills, with gross and fine motor dysfunction being the main symptom. This condition greatly impairs children's daily life, learning, and social interaction. Symptoms typically appear during preschool or school age, and if left untreated, they can persist into adulthood. Thus, early assessment and intervention are crucial to improve the prognosis. This study aims to review the existing literature on DCD, providing a comprehensive overview of the assessment for children with DCD in terms of body functions and structures, activities and participation, and environmental factors within the framework of the International Classification of Functioning, Disability, and Health - Children and Youth (ICF-CY). Additionally, specific rehabilitation interventions will be described, offering valuable insights for the clinical assessment and intervention of children with DCD.

2.
Front Microbiol ; 15: 1404995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741740

RESUMEN

Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.

3.
Neuroscience ; 540: 48-67, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38272300

RESUMEN

Anesthesia/surgery have been identified as potential factors contributing to perioperative neurocognitive disorders, with a notably heightened risk observed in aging populations. One of the primary drivers of this impairment is believed to be neuroinflammation, specifically inflammation of hippocampal microglia. Dietary restriction has demonstrated a favorable impact on cognitive impairment across various disorders, primarily by quelling neuroinflammation. However, the precise influence of dietary restriction on perioperative neurocognitive disorders remains to be definitively ascertained. This investigation aims to explore the effects of dietary restriction on perioperative neurocognitive disorders and propose innovative therapeutic strategies for their management. The model of perioperative neurocognitive disorder was induced through exploratory laparotomy under isoflurane anesthesia. Cognitive performance was evaluated using the open field test, Barnes maze test, and fear conditioning test. The enzyme-linked immunosorbent assay (ELISA) was employed to quantify concentrations of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in both serum and hippocampal samples. The Western blot technique was utilized to assess expression levels of hippocampal PSD 95, Synaptophysin, TLR4, MyD88, and NF-kB p65. Microglial polarization was gauged using a combination of reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence labeling techniques. We conducted 16S rRNA sequencing to investigate the impact of dietary restriction on the intestinal flora of aged mice following anesthesia/surgery. Our findings indicate that dietary restrictions have the potential to ameliorate anesthesia/surgery-induced cognitive dysfunction. This effect is achieved through the modulation of gut microbiota, suppression of inflammatory responses in hippocampal microglia, and facilitation of neuronal repair and regeneration.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Ratones , Animales , Enfermedades Neuroinflamatorias , Disbiosis/metabolismo , ARN Ribosómico 16S/metabolismo , Disfunción Cognitiva/metabolismo , Interleucina-6/metabolismo , Microglía/metabolismo , Ratones Endogámicos C57BL
4.
Front Neurosci ; 17: 1084813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614341

RESUMEN

Introduction: Brain tissue damage caused by ischemic stroke can trigger changes in the body's metabolic response, and understanding the changes in the metabolic response of the gut after stroke can contribute to research on poststroke brain function recovery. Despite the increase in international research on poststroke metabolic mechanisms and the availability of powerful research tools in recent years, there is still an urgent need for poststroke metabolic studies. Metabolomic examination of feces from a cerebral ischemia-reperfusion rat model can provide new insights into poststroke metabolism and identify key metabolic pathways, which will help reveal diagnostic and therapeutic targets as well as inspire pathophysiological studies after stroke. Methods: We randomly divided 16 healthy adult pathogen-free male Sprague-Dawley (SD) rats into the normal group and the study group, which received middle cerebral artery occlusion/reperfusion (MCAO/R). Ultra-performance liquid chromatography-tandem mass spectrometry (UPLCMS/MS) was used to determine the identities and concentrations of metabolites across all groups, and filtered high-quality data were analyzed for differential screening and differential metabolite functional analysis. Results: After 1 and 14 days of modeling, compared to the normal group, rats in the study group showed significant neurological deficits (p < 0.001) and significantly increased infarct volume (day 1: p < 0.001; day 14: p = 0.001). Mass spectra identified 1,044 and 635 differential metabolites in rat feces in positive and negative ion modes, respectively, which differed significantly between the normal and study groups. The metabolites with increased levels identified in the study group were involved in tryptophan metabolism (p = 0.036678, p < 0.05), arachidonic acid metabolism (p = 0.15695), cysteine and methionine metabolism (p = 0.24705), and pyrimidine metabolism (p = 0.3413), whereas the metabolites with decreased levels were involved in arginine and proline metabolism (p = 0.15695) and starch and sucrose metabolism (p = 0.52256). Discussion: We determined that UPLC-MS/MS could be employed for untargeted metabolomics research. Moreover, tryptophan metabolic pathways may have been disordered in the study group. Alterations in the tryptophan metabolome may provide additional theoretical and data support for elucidating stroke pathogenesis and selecting pathways for intervention.

5.
Front Neurol ; 14: 1167957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188307

RESUMEN

Objective: To explore the effect of 12 weeks of Tai Chi on neuromuscular responses and postural control in elderly patients with sarcopenia. Methods: One hundred and twenty-four elderly patients with sarcopenia from ZheJiang Hospital and surrounding communities were selected, however, 64 were later disqualified. Sixty elderly patients with sarcopenia were randomly assigned to the Tai Chi group (n = 30) and the control group (n = 30). Both groups received 45-min health education sessions once every 2 weeks for 12 weeks, and the Tai Chi group engaged in 40-min simplified eight-style Tai Chi exercise sessions 3 times per week for 12 weeks. Two assessors who had received professional training and were unaware of the intervention allocation assessed the subjects within 3 days prior to the intervention and within 3 days after completion of the intervention. They chose the unstable platform provided by the dynamic stability test module in ProKin 254 to evaluate the patient's postural control ability. Meanwhile, surface EMG was utilized to assess the neuromuscular response during this period. Results: After 12 weeks of intervention, the Tai Chi group showed a significant decrease in neuromuscular response times of the rectus femoris, semitendinosus, anterior tibialis, and gastrocnemius and overall stability index (OSI) compared to before the intervention (p < 0.05), while there was no significant difference in the control group for these indicators before and after intervention (p > 0.05). In addition, these indicators in the Tai Chi group were significantly lower than those in the control group (p < 0.05). The changes in neuromuscular response times of the rectus femoris, semitendinosus, anterior tibialis, and gastrocnemius were positively correlated with the changes in OSI (p < 0.05) in the Tai Chi group, but there were no significant correlations between changes in neuromuscular response times of the aforementioned muscles and changes in OSI in the control group (p < 0.05). Conclusion: Twelve-weeks of Tai Chi exercise can improve the neuromuscular response of the lower extremities in elderly patients with sarcopenia, shorten their neuromuscular response time when balance is endangered, enhance their dynamic posture control ability, and ultimately reduce the risk of falls.

6.
Front Neurol ; 13: 923669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212637

RESUMEN

Background: Tai Chi Chuan (TCC) is a physical activity modality that originated in China and is now widely popular around the world. Although there are a series of articles reporting that TCC can improve balance and other functional symptoms in a variety of populations, including the elderly, patients with stroke, and patients with Parkinson's disease, its efficiency has not been scientifically and methodically evaluated in subjects with functional ankle instability (FAI). Moreover, there is no literature directly comparing TCC and conventional balance training (CBT) interventions for FAI. The objective of this study is to investigate the comparative effects of TCC intervention and CBT protocols in improving postural balance and subjective instability feelings in patients with FAI. Methods: This study will be a single-center, parallel group, randomized controlled trial. Sixty-eight patients with FAI will be included and randomly assigned in a 1:1 ratio to either an intervention group (n =34) or a control group (n = 34). The participants in the intervention group will complete 12 weeks of TCC intervention (40 min/time, 3 times/week for 12 weeks) on the basis of health education treatment. The control group will receive health education and 36 CBT sessions during a 12-week period. Outcome measures include postural stability and self-reported feelings of instability at baseline, after the end of the intervention, and 3-month follow-up. The postural stability assessment of patients with FAI will be detected by performing static and dynamic postural tests, which will be carried out through a specific balance platform (TecnoBody ProKin). Self-reported feelings of instability will be assessed by Cumberland Ankle Instability Tool (CAIT), American Orthopedics Foot and Ankle Society's Ankle-Hindfoot Evaluation Scale (AOFAS-AHES), and the MOS item Short Form Health Survey (SF-36). Discussion: This trial will demonstrate whether a 12-week TCC intervention positively affects postural stability and self-reported outcomes in patients with FAI. At the same time, the superiority of its clinical efficacy will also be compared with that of CBT. This study may also help to redefine the value of traditional Chinese exercises in the treatment of chronic ankle instability. Clinical trial registration: Chinese Clinical Trial Registry: ChiCTR2100041790. Registration date: 22 March 2021. http://www.chictr.org.cn/edit.aspx?pid=119501&htm=4.

7.
J Sports Med Phys Fitness ; 62(12): 1707-1715, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35333029

RESUMEN

INTRODUCTION: Chronic ankle instability (CAI), which is characterized by deficient postural control, is associated with functional limitations and diminished self-reported quality of life. Recent studies have suggested that balance training can improve postural control, but high-quality evidence-based research to confirm the effect of balance training on dynamic postural stability in CAI patients is lacking. The purpose of this study was to synthesize current evidence regarding the effect of balance training on dynamic postural stability in CAI patients. EVIDENCE ACQUISITION: PubMed, Embase, Web of Science and Cochrane Library databases were searched for clinical trials that evaluated the effect of balance training on posture and balance in CAI patients from their inception to 15 July 2021. All statistical analyses were performed in RevMan 5.4. The risk of bias was assessed by the Cochrane Collaboration's risk of bias tool, and studies that reported statistically comparable outcomes were analyzed in meta-analyses using random effects models. Heterogeneity was assessed using the I2 statistic index. EVIDENCE SYNTHESIS: A total of 12 RCTs included in this meta-analysis and revealed that balance training was effective for improving the dynamic posture stability of CAI patients (SMD=0:90; 95% CI: 0.54 to 1.26; P<0:00001, I2=71%; Star Excursion Balance Test). Subgroup analysis (balance training vs. other training) revealed a small negative effect size, but this was not statistically significant (SMD=-0.12, 95% CI=-0.53 to 0.29, P=0.56, I2=9%). Another subgroup analysis (balance training vs. no training) revealed that balance training was more likely to have greater improvement on the dynamic posture stability of CAI patients (SMD=0.94, 95% CI: 0.71 to 1.17; P<0.00001, I2=0%). CONCLUSIONS: Balance training yielded a statistically significant and clinically meaningful improvement in dynamic postural stability in CAI patients. Limited evidence indicates that balance training was more effective than other training methods.


Asunto(s)
Articulación del Tobillo , Inestabilidad de la Articulación , Humanos , Tobillo , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Equilibrio Postural , Enfermedad Crónica
8.
Am J Phys Med Rehabil ; 101(5): 446-453, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261896

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the therapeutic effects of transcranial direct current stimulation on swallowing function in poststroke patients. DESIGN: We searched for potentially eligible randomized controlled trials from electronic databases, including the PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang, and Chinese Science and Technology Periodical (VIP) databases, from their inception to January 15, 2021. All statistical analyses were performed using RevMan 5.4, and the standardized mean difference with 95% confidence intervals was estimated for the swallowing function outcomes and to understand the mean effect size. RESULTS: Ten studies involving 343 participants were included in this meta-analysis. The overall analyses demonstrated a significant effect size for swallowing function. Subgroup analyses suggested that both acute and chronic stroke patients showed significant effects on swallowing function after transcranial direct current stimulation. Furthermore, compared with sham stimulation, transcranial direct current stimulation anodal to the affected, unaffected, and bilateral hemispheres can produce a significant effect size for swallowing function in stroke patients. CONCLUSIONS: This meta-analysis showed that transcranial direct current stimulation is likely to be effective for the recovery of dysphagia in poststroke patients, in the acute or chronic phase, and that the effect of anodal transcranial direct current stimulation to unaffected hemispheres is larger.


Asunto(s)
Trastornos de Deglución , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Deglución , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA