Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Rheumatol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356380

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which activated CD4+ T cells participate in the disease process by inducing inflammation. We aimed to investigate the role of Toll-like receptor 2 (TLR2) on CD4+ T cells in RA patients, and to elucidate the underlying mechanisms by which TLR2 contributes to the pathogenesis of RA. METHODS: Serum samples were collected from RA patients and healthy controls. Soluble TLR2 levels were quantified using an enzyme-linked immunosorbent assay (ELISA). Flow cytometry was employed to assess the TLR2 expression level, activation status, cytokine production, reactive oxygen species (ROS) levels, and glucose uptake capacity of CD4+ T cells. Quantitative polymerase chain reaction (qPCR) was used to measure the expression of enzymes associated with glucose and lipid metabolism. The concentration of lactic acid in the culture supernatant was determined using a dedicated detection kit. RESULTS: RA patients had higher levels of TLR2 in their serum, which positively correlated with C-reactive protein and rheumatoid factor. The expression level of TLR2 in CD4+ T cells of RA patients was increased, and TLR2+ cells showed higher activation levels than TLR2- cells. Activation of TLR2 in CD4+ T cells of RA patients promoted their activation, TNF-α secretion, and increased production of ROS. Furthermore, TLR2 activation led to changes in enzymes related to glucose metabolism, causing a shift in glucose metabolism towards the pentose phosphate pathway. Blocking oxidative phosphorylation and the pentose phosphate pathway had varying effects on CD4+ T cell function. CONCLUSION: TLR2 reprograms the glucose metabolism of CD4+ T cells in RA patients, contributing to the development of RA through ROS-mediated cell hyperactivation and TNF-α secretion. Key Points • TLR2 is upregulated in CD4+ T cells of RA patients and correlates with disease severity markers such as CRP and RF. • Activation of TLR2 in CD4+ T cells promotes cell activation, TNF-α secretion, and increased ROS production, contributing to the pathogenesis of RA. • TLR2 activates glucose metabolism in CD4+ T cells, shifting towards the pentose phosphate pathway, which may be a novel therapeutic target for RA treatment. • Blocking glucose metabolism and ROS production can reduce CD4 + T cell hyperactivation and TNF-α secretion, indicating potential therapeutic strategies for RA management.

2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 519-525, 2024 Jun 18.
Artículo en Chino | MEDLINE | ID: mdl-38864139

RESUMEN

OBJECTIVE: To investigate the serum lactate level in patients with rheumatoid arthritis (RA) and its relationship with disease activity, and to analyze the effect of sodium lactate on the activation of CD4+ T cells, the ability of secreting cytokines and CD4+T cell subsets in peripheral blood of the RA patients. METHODS: The peripheral blood of healthy controls (HC) and RA patients was collected, and the content of lactate in the supernatant was detected by lactate detection kit, the correlation between the content of lactate and the disease score of the RA patients was analyzed; the activation level of CD4+ T cells, the proportion of CD4+ T cell subsets and the cytokines secreted by CD4+ T cells in peripheral blood of all the RA patients were detected by flow cytometry after being stimulated with sodium lactate. RESULTS: The serum lactate level in the RA patients (n=66) was significantly higher than that in the HC (n=60, P < 0.001), and there was a certain correlation with disease activity score in 28 joints (DAS28)-C-reactive protein (CRP) (r=0.273, P=0.029), The levels of rheumatoid factor [RF, 197.50 (26.03, 783.00) IU/mL vs. 29.30 (0.00, 102.60) IU/mL, P < 0.01], CRP [37.40 (11.30, 72.60) mg/L vs. 5.83 (2.36, 12.45) mg/L, P < 0.001], were increased in patients with the lactate concentration greater than 5 mmol/L were significantly higher than those in patients with the lactate concentration less than or equal 5 mmol/L, however, there was no significant difference in the expression of erythrocyte sedimentation rate [ESR, 42.00 (19.00, 77.00) mm/h vs. 25.00 (12.50, 45.50) mm/h, P>0.05] and anti-cyclic citrullinated peptied (CCP) antibody [82.35 (17.70, 137.00) RU/mL vs. 68.60 (25.95, 119.70) RU/mL, P>0.05]. Compared with the control group, the expression of PD-1 (46.15%±8.54% vs. 41.67%±9.98%, P < 0.001), inducible costimulatory molecule (ICOS, 5.77%±8.60% vs. 18.65%±7.94%, P < 0.01) and CD25 (25.89%±5.80% vs. 22.25%±4.59%, P < 0.01) on the surface of CD4+ T cells in the RA patients treated with sodium lactate was significantly increased. Compared with the control group, the proportion of Th17 (4.62%±1.74% vs. 2.93%±1.92%, P < 0.05) and Tph (28.02%±6.28% vs. 20.32%±5.82%, P < 0.01) cells in CD4+T cells of the RA patients in the sodium lactate treatment group increased. Compared with the control group, the expression of IL-21 (5.73%±1.59% vs. 4.75%±1.71%, P < 0.05) in CD4+T cells was up-regulated in the RA patients treated with sodium lactate. CONCLUSION: The level of serum lactate in RA patients is increased, which promotes the activation of CD4+T cells and the secretion of IL-21, and up-regulates the proportion of Th17 and Tph cells in the RA patients.


Asunto(s)
Artritis Reumatoide , Linfocitos T CD4-Positivos , Ácido Láctico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Artritis Reumatoide/sangre , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Linfocitos T CD4-Positivos/metabolismo , Citocinas/sangre , Interferón gamma/sangre , Ácido Láctico/sangre , Factor Reumatoide/sangre , Subgrupos de Linfocitos T/inmunología
3.
Int Immunopharmacol ; 121: 110532, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354782

RESUMEN

Our previous study found that increased serum IL-27 could promote rheumatoid arthritis (RA) B cell dysfunction via activating mTOR signaling pathway. This study aimed to explore the effects of IL-27 on B cell metabolism and clarify the mechanisms via which IL-27 enhancing glycolysis to induce B cells hyperactivation. Peripheral CD19+ B cells were purified from healthy controls (HC) and RA patients and then cultured with or without anti-CD40/CpG and glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or mTOR inhibitor rapamycin. Furthermore, the isolated CD19+ B cells were treated by HC serum or RA serum in the presence and absence of recombinant human IL-27 or anti-IL-27 neutralizing antibodies or 2-DG or rapamycin. The B cell glycolysis level, proliferation, differentiation and inflammatory actions were detected by qPCR, flow cytometry or ELISA. We found that the glycolysis in RA B cells was increased significantly compared with HC B cells. Glycolysis inhibition downregulated the proliferation, differentiation, and inflammatory actions of RA B cells. RA serum and IL-27 promoted B cell glycolysis, which could be obviously rescued by anti-IL-27 antibodies or mTOR inhibitor rapamycin. Our results suggest that the enhanced cellular glycolysis of RA B cells induced by IL-27 may contribute to B cells hyperactivation through activating the mTOR signaling pathway.


Asunto(s)
Artritis Reumatoide , Interleucina-27 , Humanos , Antígenos CD19/metabolismo , Glucólisis , Interleucina-27/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
4.
Biomedicines ; 10(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36551817

RESUMEN

CYP3A4, CYP3A5, and CYP3A7, which are located in a multigene locus (CYP3A), play crucial roles in drug metabolism. To understand the highly variable hepatic expression of CYP3As, regulatory network analyses have focused on transcription factors (TFs). Since long non-coding RNAs (lncRNAs) likely contribute to such networks, we assessed the regulatory effects of both TFs and lncRNAs on CYP3A expression in the human liver and small intestine, main organs of CYP3A expression. Using weighted gene co-expression network analysis (WGCNA) of GTEx v8 RNA expression data and multiple stepwise regression analysis, we constructed TF-lncRNA-CYP3A co-expression networks. Multiple lncRNAs and TFs displayed robust associations with CYP3A expression that differed between liver and small intestines (LINC02499, HNF4A-AS1, AC027682.6, LOC102724153, and RP11-503C24.6), indicating that lncRNAs contribute to variance in CYP3A expression in both organs. Of these, HNF4A-AS1 had been experimentally demonstrated to affect CYP3A expression. Incorporating ncRNAs into CYP3A expression regulatory network revealed additional candidate TFs associated with CYP3A expression. These results serve as a guide for experimental studies on lncRNA-TF regulation of CYP3A expression in the liver and small intestines.

5.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35671504

RESUMEN

The identification of the conserved and variable regions in the multiple sequence alignment (MSA) is critical to accelerating the process of understanding the function of genes. MSA visualizations allow us to transform sequence features into understandable visual representations. As the sequence-structure-function relationship gains increasing attention in molecular biology studies, the simple display of nucleotide or protein sequence alignment is not satisfied. A more scalable visualization is required to broaden the scope of sequence investigation. Here we present ggmsa, an R package for mining comprehensive sequence features and integrating the associated data of MSA by a variety of display methods. To uncover sequence conservation patterns, variations and recombination at the site level, sequence bundles, sequence logos, stacked sequence alignment and comparative plots are implemented. ggmsa supports integrating the correlation of MSA sequences and their phenotypes, as well as other traits such as ancestral sequences, molecular structures, molecular functions and expression levels. We also design a new visualization method for genome alignments in multiple alignment format to explore the pattern of within and between species variation. Combining these visual representations with prime knowledge, ggmsa assists researchers in discovering MSA and making decisions. The ggmsa package is open-source software released under the Artistic-2.0 license, and it is freely available on Bioconductor (https://bioconductor.org/packages/ggmsa) and Github (https://github.com/YuLab-SMU/ggmsa).


Asunto(s)
Genoma , Programas Informáticos , Secuencia de Aminoácidos , Posición Específica de Matrices de Puntuación , Alineación de Secuencia
6.
Med Sci Monit ; 27: e929834, 2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33454720

RESUMEN

BACKGROUND Learning medical English is particularly challenging for non-native English-speaking medical students. The Smart Class teaching module is a new online teaching module for rehabilitation-related medical English, the efficacy of which has yet to be established in the literature. Gender differences should also not be ignored in our study, taking into account the proven performance differences between males and females in language learning. MATERIAL AND METHODS First-year physiotherapy students in Grade 2018 and Grade 2019 at Guangzhou Medical University were recruited to participate in this study. Grade 2019, as the experimental group, completed the Smart Class teaching module, while Grade 2018, as the control group, completed the Traditional Class teaching module. The efficacy of both modules was assessed objectively using the students' medical English exam scores and subjectively using the students' responses to a questionnaire. RESULTS In total, 242 questionnaires were distributed, and 210 valid questionnaires were returned, of which 119 were from the Smart Class teaching module group and 91 were from the Traditional Class teaching module group. There was no statistically significant difference between the medical English exam scores of the 2 groups (P=0.324). However, the subjective assessment revealed that the students experienced a significantly greater burden from the workload in the Smart Class teaching module group (P<0.001). CONCLUSIONS We found both the Smart Class teaching module and the Traditional Class teaching module achieved similar teaching outcomes. Therefore, the former represents a viable alternative teaching option for situations where traditional class teaching is not possible.


Asunto(s)
Instrucción por Computador/métodos , Especialidad de Fisioterapia/educación , Traducción , Adolescente , China , Instrucción por Computador/normas , Femenino , Humanos , Dominio Limitado del Inglés , Masculino , Estudiantes del Área de la Salud/psicología , Estudiantes del Área de la Salud/estadística & datos numéricos , Materiales de Enseñanza/normas , Adulto Joven
7.
Sci Rep ; 9(1): 19370, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852965

RESUMEN

Sepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3' untranslated region (3'-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1ß and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-ß is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-ß expression. Positive mutual feedback between HMGB1 and IKK-ß was observed when we silenced HMGB1 or IKK-ß. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-ß by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.


Asunto(s)
Acetofenonas/farmacología , Proteína HMGB1/genética , Inflamación/tratamiento farmacológico , MicroARNs/genética , Sepsis/tratamiento farmacológico , Acetofenonas/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , FN-kappa B/genética , Paeonia/química , Células RAW 264.7 , Sepsis/genética , Sepsis/patología
8.
Int Immunopharmacol ; 61: 169-177, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29883962

RESUMEN

High-mobility group box 1 (HMGB1) is a highly conserved DNA-binding nuclear protein that facilitates gene transcription and the DNA repair response. However, HMGB1 may be released by necrotic cells as well as activated monocytes and macrophages following stimulation with lipopolysaccharide (LPS), interleukin-1ß (IL-1ß), or tumor necrosis factor-α (TNF-α). Extracellular HMGB1 plays a critical role in the pathogenesis of acute lung injury (ALI) through activating the nuclear transcription factor κB (NF-κB) P65 pathway, thus, it may be a promising therapeutic target in shock-induced ALI. Paeonol (Pae) is the main active component of Paeonia suffruticosa, which has been used to inhibit the inflammatory response in traditional Chinese medicine. We have proven that Pae inhibits the expression, relocation and secretion of HMGB1 in vitro. However, the role of Pae in the HMGB1-NF-κB pathway remains unknown. We herein investigated the role of Pae in LPS-induced ALI rats. In this study, LPS induced a marked decrease in the mean arterial pressure (MAP) and survival rate (only 25% after 72 h), and induced severe pathological changes in the lung tissue of rats, which was accompanied by elevated expression of HMGB1 and its downstream protein NF-κB P65. Treatment with Pae significantly improved the survival rate (>60%) and MAP, and attenuated the pathological damage to the lung tissue in ALI rats. Western blotting revealed that Pae also inhibited the total expression of HMGB1, NF-κB P65 and TNF-α in the lung tissue of ALI rats. Moreover, Pae increased the expression of HMGB1 in the nucleus, inhibited the production of HMGB1 in the cytoplasm, and decreased the expression of P65 both in the nucleus and cytoplasm of lung tissue cells in LPS-induced ALI rats. The results were in agreement with those observed in the in vitro experiment. These findings indicate that Pae may be a potential treatment for ALI through its repression of the HMGB1-NF-κB P65 signaling pathway.


Asunto(s)
Acetofenonas/uso terapéutico , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Proteína HMGB1/metabolismo , Pulmón/patología , Medicina Tradicional China , Lesión Pulmonar Aguda/inmunología , Animales , Reparación del ADN/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Proteína HMGB1/genética , Humanos , Lipopolisacáridos/inmunología , Pulmón/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
Inflammation ; 41(4): 1536-1545, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29736733

RESUMEN

Extracellular high mobility group box 1 (HMGB1) is a lethal pro-inflammatory mediator in endotoxin shock. Hyperacetylation of HMGB1, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), changes its subcellular localization and secretion to the extracellular matrix. Paeonol (2'-hydroxy-4'-methoxyacetophenone), one of the main active components of Paeonia suffruticosa, exerts anti-inflammatory effects. Our previous study demonstrated that Paeonol inhibited the relocation and secretion of HMGB1 in lipopolysaccharide (LPS)-activated RAW264.7 cells. However, it is still unclear whether Paeonol can regulate HATs/HDACs, which are responsible for the translocation of HMGB1 from nucleus to cytoplasm. To answer this question, P300 (a transcriptional coactivator with HATs) and HDAC3 were investigated using RT-qPCR and western blotting. The results showed that HMGB1 translocated from the nucleus to the cytoplasm, accompanied by upregulation of P300 and downregulation of HDAC3 in LPS-induced RAW264.7 cells. Paeonol, however, reversed the expression of P300 and HDAC3 significantly, suggesting that Paeonol may be involved in the acetylation of HMGB1 by regulating P300/HDAC3. Then, the effect of HDAC3 on the nucleocytoplasmic transportation of HMGB1 by HDAC3-SiRNA was evaluated. The results demonstrated that the inhibition of HDAC3 resulted in the nucleocytoplasmic translocation of HMGB1, with or without LPS stimulation. Moreover, Paeonol had no effect on the translocation of HMGB1 following ablation of HDAC3. These findings support the hypothesis that Paeonol can inhibit the translocation and secretion of HMGB1 in LPS-induced RAW264.7 cells by upregulating the expression of HDAC3. Paeonol may therefore be a valuable candidate as an HMGB1-targeting drug for inflammatory diseases via upregulation of HDAC3.


Asunto(s)
Acetofenonas/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Proteína HMGB1/metabolismo , Histona Desacetilasas/metabolismo , Lipopolisacáridos/farmacología , Animales , Histona Acetiltransferasas , Inflamación/tratamiento farmacológico , Ratones , Células RAW 264.7 , Regulación hacia Arriba/efectos de los fármacos , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA