RESUMEN
Carbon based materials are widely used in the preparation of microwave absorption materials due to their low density, high attenuation loss and large specific surface area. However, their high conductivity usually leads to high reflection loss. In this study, multi-layer heterogeneous interfaces were constructed in liquid metal graphite hybrid powder to reduce reflection loss and enhance microwave absorption performance. Gallium oxide (Ga2O3) layer was formed in Ga coated graphite powder to improve impedance matching and attenuation constant via an annealing treatment. Specifically, the hybrid particles with 50 wt% Ga and being annealed at 120 °C for 2 h have a minimum reflection loss (RLmin) value of -42.68 dB and a maximum effective absorption bandwidth (EAB) of 4.11 GHz at a thickness of 3.3 mm. The hybrid particles not only have multi-layer structures with different electrical conductivity, but also form heterojunctions between different interfaces, which can further enhance dipole and interfacial polarization.
RESUMEN
Background: DNAJ heat shock protein family (Hsp40) member C1(DNAJC1) is a member of the DNAJ family. Some members of the DNAJ gene family had oncogenic properties in many cancers. However, the role of DNAJC1 in hepatocellular carcinoma (HCC) was unclear. Methods: In this study, expression and prognostic value of DNAJC1 in HCC were analyzed by bioinformatics. Quantitative real-time PCR and Western blotting were used to verify DNAJC1 expression in liver cancer cell lines. Furthermore, immunohistochemical (IHC) was used to detect DNAJC1 expression in liver cancer tissues. Subsequently, the effect of DNAJC1 on the proliferation, migration, invasion and apoptosis of HCC cells was detected by knocking down DNAJC1. Finally, gene set enrichment analysis (GSEA) was used to investigate the potential mechanism of DNAJC1 and was verified by Western blotting. Results: DNAJC1 was highly expressed in HCC and was significantly associated with the prognosis of patients with HCC. Importantly, the proliferation, migration and invasion of Huh7 and MHCC97H cells were inhibited by the knockdown of DNAJC1 and the knockdown of DNAJC1 promoted Huh7 and MHCC97H cell apoptosis. Furthermore, compared to the negative control group, DNAJC1 knockdown in Huh7 and MHCC97H cells promoted the expression of p21, p53, p-p53(Ser20), Bax and E-cadherin proteins, while inhibiting the expression of PARP, MMP9, Vimentin, Snai1, Bcl-2 and N-cadherin proteins. Conclusions: DNAJC1 had a predictive value for the prognosis of HCC. Knockdown of DNAJC1 may inhibit HCC cell proliferation, migration and invasion and promote the HCC cell apoptosis through p53 and EMT signaling pathways.
RESUMEN
Reasonable heterointerface modification can effectively regulate and enhance the microwave absorption of electromagnetic materials. The surface of magnetic permalloy (PM) microparticles is modified herein by coating double-layer metal organic frameworks (MOF), which are composed of a 2-methylimidazole cobalt salt (ZIF-67) layer and a 2-methylimidazole zinc salt (ZIF-8) layer. A stable heterointerface structure with cobalt/carbon (Co/C) and zinc/carbon (Zn/C) layers is formed on the surface of PM microparticles after pyrolysis. These particles include two types of composite particles of PM solely encapsulated by ZIF-67 or ZIF-8, PM@ZIF67 and PM@ZIF8, respectively, and two types of composite PM particles with a double-layered MOF outer shell structure obtained by exchanging the coating sequence (PM@ZIF8@ZIF67 and PM@ZIF67@ZIF8). Furthermore, the thermal decomposition temperature has a significant impact on the surface morphology and magnetic properties of the composite particles. After pyrolyzing at 500 °C, the PM@ZIF67@ZIF8 samples exhibit the highest microwave absorption performance among these samples. Specifically, the minimum reflection loss and effective absorption bandwidth of PM@ZIF67@ZIF8 after pyrolyzing at 500 °C can reach -47.3 dB at a matching thickness of 3.8 mm and 5.3 GHz at a matching thickness of 2.5 mm, respectively. A heterointerface with an electrical field orientation is created in the PM@ZIF67@ZIF8 particles, which effectively enhances the interface polarization and dipole polarization. Furthermore, the formation of a three-dimensional carbon network after pyrolysis is also useful for optimizing impedance matching and enhancing magneto-electric synergism.