Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biol ; 221(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35446349

RESUMEN

Subcellular localization of the deubiquitinating enzyme BAP1 is deterministic for its tumor suppressor activity. While the monoubiquitination of BAP1 by an atypical E2/E3-conjugated enzyme UBE2O and BAP1 auto-deubiquitination are known to regulate its nuclear localization, the molecular mechanism by which BAP1 is imported into the nucleus has remained elusive. Here, we demonstrated that transportin-1 (TNPO1, also known as Karyopherin ß2 or Kapß2) targets an atypical C-terminal proline-tyrosine nuclear localization signal (PY-NLS) motif of BAP1 and serves as the primary nuclear transporter of BAP1 to achieve its nuclear import. TNPO1 binding dissociates dimeric BAP1 and sequesters the monoubiquitination sites flanking the PY-NLS of BAP1 to counteract the function of UBE2O that retains BAP1 in the cytosol. Our findings shed light on how TNPO1 regulates the nuclear import, self-association, and monoubiquitination of BAP1 pertinent to oncogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular , Señales de Localización Nuclear , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , beta Carioferinas , Núcleo Celular/metabolismo , Humanos , Señales de Localización Nuclear/metabolismo , Prolina/metabolismo , Tirosina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , beta Carioferinas/metabolismo
2.
Curr Protoc ; 1(9): e246, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34529358

RESUMEN

Natural killer (NK) cells are potent innate immune cells that provide the surveillance and elimination of infected, stressed, and malignant cells. The unique immune recognition mechanisms and functions of NK cells make them an attractive cell type for immunology research and adoptive immunotherapy. However, primary NK cells are challenging to culture ex vivo and lack efficient genetic tools, hindering the research of NK cells and the development of NK cell therapeutics. Here we describe methods for the freeze-thaw process, feeder-free ex vivo expansion, CRISPR-Cas9 genome editing, and functional characterizations of primary human NK cells. Our protocol enables ∼30-fold and ∼2000-fold average expansion rates from 1 × 107 cryopreserved NK cells in 14 and 28 days, respectively. We also detail methods for CRISPR gene knockout and knockin by nucleofection of Cas9 ribonucleoproteins (RNP) and DNA repair templates. Gene knockout by Cas9 RNP nucleofection can be multiplexed to simultaneously target three genes. The CRISPR-edited cells can be cryopreserved and rethawed with high viability for future studies. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Thawing of natural killer cells Basic Protocol 2: Ex vivo expansion of natural killer cells Basic Protocol 3: Cryopreservation of expanded natural killer cells Basic Protocol 4: Characterization of natural killer cells: Flow cytometry and surface marker analysis Basic Protocol 5: Cytotoxicity and degranulation assays Basic Protocol 6: Preparation of homology-directed repair templates Basic Protocol 7: Nucleofection of CRISPR-Cas9 ribonucleoproteins Basic Protocol 8: Genotyping of gene-edited natural killer cells Basic Protocol 9: Phenotyping of gene-edited natural killer cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes , Humanos , Inmunoterapia Adoptiva , Células Asesinas Naturales
3.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33433623

RESUMEN

Genome editing is a powerful technique for delineating complex signaling circuitry and enhancing the functionality of immune cells for immunotherapy. Natural killer (NK) cells are potent immune effectors against cell malignancy, but they are challenging to modify genetically by conventional methods due to the toxicity of DNA when introduced into cells coupled with limited transfection and transduction efficiency. Here, we describe an integrated platform that streamlines feeder-free ex vivo expansion of cryopreserved primary human NK cells and nonviral genome editing by the nucleofection of CRISPR-Cas9 ribonucleoproteins (Cas9 RNPs). The optimized Cas9 nucleofection protocol allows efficient and multiplex gene knockout in NK cells while preserving high cell viability and negligible off-target effects. Cointroduction of a DNA template also enables in-frame gene knock-in of an HA affinity tag and a gfp reporter across multiple loci. This work demonstrates the advantages and flexibility of working with cryopreserved NK cells as potential off-the-shelf engineered therapeutic agents.


Asunto(s)
Edición Génica , Células Asesinas Naturales/metabolismo , Secuencia de Aminoácidos , Biomarcadores/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Cromosomas Humanos/genética , Criopreservación , Citotoxicidad Inmunológica , ADN/metabolismo , Células Nutrientes/citología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Activación de Linfocitos/inmunología , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , Ribonucleoproteínas/metabolismo , Translocación Genética
4.
EMBO Mol Med ; 13(1): e12828, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33159417

RESUMEN

To circumvent the devastating pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a humanized decoy antibody (ACE2-Fc fusion protein) was designed to target the interaction between viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). First, we demonstrated that ACE2-Fc could specifically abrogate virus replication by blocking the entry of SARS-CoV-2 spike-expressing pseudotyped virus into both ACE2-expressing lung cells and lung organoids. The impairment of viral entry was not affected by virus variants, since efficient inhibition was also observed in six SARS-CoV-2 clinical strains, including the D614G variants which have been shown to exhibit increased infectivity. The preservation of peptidase activity also enables ACE2-Fc to reduce the angiotensin II-mediated cytokine cascade. Furthermore, this Fc domain of ACE2-Fc was shown to activate NK cell degranulation after co-incubation with Spike-expressing H1975 cells. These promising characteristics potentiate the therapeutic prospects of ACE2-Fc as an effective treatment for COVID-19.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Antivirales/farmacología , COVID-19/prevención & control , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Chlorocebus aethiops , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Células Vero
5.
Front Immunol ; 11: 1008, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528479

RESUMEN

Natural killer (NK) cells are an attractive cell-type for adoptive immunotherapy, but challenges in preparation of therapeutic primary NK cells restrict patient accessibility to NK cell immunotherapy. NK-92 is a well-characterized human NK cell line that has demonstrated promising anti-cancer activities in clinical trials. Unlimited proliferation of NK-92 cells provides a consistent supply of cells for the administration and development of NK cell immunotherapy. However, the clinical efficacy of NK-92 cells has not reached its full potential due to reduced immune functions as compared to primary NK cells. Improvements of NK-92 functions currently rely on conventional transgene delivery by mRNA, plasmid and viral vector with limited efficiencies. To enable precise genetic modifications, we have established a robust CRISPR genome engineering platform for NK-92 based on the nucleofection of Cas9 ribonucleoprotein. To demonstrate the versatility of the platform, we have performed cell-based screening of Cas9 guide RNA, multiplex gene knockout of activating and inhibitory receptors, knock-in of a fluorescent gene, and promoter insertion to reactivate endogenous CD16 and DNAM-1. The CRISPR-engineered NK-92 demonstrated markedly enhanced cytotoxicity and could mediate antibody-dependent cellular cytotoxicity against hard to kill cancer cell lines. Our genome editing platform is straightforward and robust for both functional studies and therapeutic engineering of NK-92 cells.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Supervivencia Celular , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células Asesinas Naturales/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo
6.
J Alzheimers Dis ; 56(3): 959-976, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28106556

RESUMEN

The presence of amyloid-ß (Aß) plaque and tau protein hyperphosphorylation in brain tissue is the pathological hallmark of Alzheimer's disease (AD). At least some Aß neurotoxicity is caused by the presence of excess glutamate that has been induced by Aß accumulation. Memantine is currently the only NMDA receptor inhibitor approved for treating moderate-to-severe AD patients. We utilized primary cortical neurons and DiBAC4(3), a slow-response voltage sensitive fluorescence dye, to create a novel system for screening herbal medicines that allows the identification of pure compounds able to ameliorate Aß-induced abnormal depolarization. The intensity of DiBAC4(3) fluorescence was increased when primary neurons were stimulated by Aß; furthermore, pre-treatment with memantine abolished this change. Using this system, we identified six crude extracts made from herbal medicines that effectively alleviated this Aß-induced abnormal depolarization. Among these herbal medicines, one pure compound, baicalein, which was known to be present in Scutellaria baricalensis and is known to improve memory using an AD mouse model, was identified by our assay. However, the compound's molecular mechanism remained unknown. We found that baicalein, in addition to inhibiting Aß-induced depolarization, possibly functions as an antagonist of AMPA and NMDA receptors. Taken together, we have established a system/platform to identify herbal medicines that ameliorate Aß-induced depolarization of neurons. Equally important, baicalein is a candidate drug with great potential for the treatment of AD patients.


Asunto(s)
Flavanonas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Células HEK293 , Humanos , MAP Quinasa Quinasa 4/metabolismo , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Neurotransmisores/farmacología , Fragmentos de Péptidos/toxicidad , Fitoterapia , Extractos Vegetales/farmacología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA