Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Front Microbiol ; 15: 1380805, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601927

RESUMEN

Introduction: Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods: In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results: The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion: This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.

2.
Sci Total Environ ; 913: 169427, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135066

RESUMEN

Microplastics (MPs) can interact with dissolved organic matter (DOM), a common component found in the environment. However, the effect of MPs type on its interaction with DOM has not been systematically studied. Therefore, the binding properties of different MPs with fulvic acid (FA) were explored in this study. The results showed that polypropylene (PP) and polyethylene (PE) had higher adsorption affinity for FA than polystyrene (PS) and polyvinyl chloride (PVC). The interaction between MPs and FA conformed to the pseudo-first-order model and Freundlich model (except PS). The interaction mechanisms between various MPs tested in this paper and FA are considered to be different. PP, PE and PS interacted with the aromatic structure of FA and were entrapped in the FA polymers by the carboxyl groups and CO bonds, resulting in a highly conjugated co-polymer, suggesting that oxygen-containing functional groups played a key role. However, it was assumed that the interaction between PVC and FA was more likely to be caused by hydrophobic interaction. This research will help to enhance our comprehension of the environmental behavior of MPs and their interaction with the DOM specifically.

3.
Sci Total Environ ; 865: 161292, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36596426

RESUMEN

An increasing number of researchers have focused on microplastics (MPs) pollution in inland freshwater lakes due to its ecotoxicity, while little is known about the effects of hydrological periods on MPs distribution. Therefore, this study aims to investigate MPs distribution, morphological characteristics and physicochemical indices in various environments in dry and wet periods in Caohai Lake. The results exhibited that cultivated soil, water, and sediment in Caohai Lake have been polluted by MPs in dry and wet periods. There were pellets, fragments, film, and fibers of MPs in both dry and wet periods, and MP foam was additionally found in the wet period. MPs with 0 to 0.5 mm possessed the largest proportion in the five environments in dry and wet periods, followed by MPs with 0.5 to 1 mm and 1 to 5 mm. In Caohai Lake, the black, white, green, red, and transparent MPs in dry period, and black, colourful, grey, red and transparent MPs in wet period were found. The developed structural equation model confirmed that MPs in sediment were probably mainly from soil. There are negative effects of the relative abundance of MPs from cultivated soil to lake water in the dry period, whereas the opposite is true in the wet period. Interestingly, the complex and fast water velocity in the estuary in the wet period led to a lower relative abundance of MPs in its sediment in comparison with the dry period. The distribution model of MPs in estuary and lake water in dry and wet periods is not inconsistent. Our results suggest that the related government department should take measures to reduce the MPs pollution in Caohai Lake, especially from the source.

4.
Sci Total Environ ; 859(Pt 2): 160151, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36423843

RESUMEN

Microplastics (<5 mm) (MPs) are widely distributed throughout the world, and their accumulation and migration in the environment have caused health and safety concerns. Currently, most of the reviewed literatures mainly focus on the distribution in various environmental media, adsorption mechanisms with different pollutants, and characterization of MPs. Therefore, the present review mainly highlights the characterization techniques of MPs and the underlying mechanisms of their combination with conventional coexisting substances (heavy metals, organic pollutants, and nutrients). We observed that massive MP pollution has been found in many areas, especially in Africa, Asia, India, South Africa, North America and Europe. The separation methods of MPs in different environmental media are basically similar, including sampling, pre-treatment, flotation, filtration and digestion. The combination of multiple characterization technologies can more precisely identify the shape, abundance, colour, and particle size of MPs. Notably, although recent reports have confirmed that MPs can act as carriers of heavy metals and carry them into organisms to cause harm, MPs have different adsorption and desorption characteristics for various heavy metals. The adsorption capacity of organic pollutants onto MPs is closely related to their hydrophobicity, specific surface area and functional group characteristics. The relative abundance of MPs in sediments and lakes had a significantly positive correlation with the mass concentration of total nitrogen in lake water, but this finding still needs to be further verified. Based on current research, we suggest that future MP research should focus on characterization technology, environmental migration, ecological effects, health risks and degradation methods.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Sudáfrica
5.
Environ Sci Pollut Res Int ; 30(3): 8098-8109, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36050555

RESUMEN

The photocatalytic degradation of antibiotics requires a good separation efficiency of photogenerated electron-hole pairs and a wide visible light absorption range. Current studies have discussed the successful preparation of ferroferric oxide/graphite carbon nitride/reduced graphene oxide (Fe3O4/g-C3N4/rGO). The phase structure and morphology of the Fe3O4/g-C3N4/rGO composites were characterized by XRD, HR-TEM, SEM, and EDS. The obtained composites were used to degrade tetracycline hydrochloride (TCH) to evaluate its photocatalytic activity. The effects of four variables on the degradation of TCH were analyzed by the response surface method and artificial intelligence (gradient regression tree, random forest, artificial neural network, etc.). The results showed that the graphite carbon nitride in the catalyst maintained its original structure and that the photocatalytic activity was significantly improved. The degradation rate of TCH was 86.7% under the optimal conditions (the Fe3O4/g-C3N4/rGO dosage was 0.1 g, pH = 7.0, the initial concentration of TCH was 20 mg/L, and the visible light irradiation time was 60 min). At the same time, the degradation rate of TCH changed little after the material was used five times, which indicates that the stability and recyclability of the Fe3O4/g-C3N4/rGO photocatalyst were excellent. Finally, a possible photocatalytic mechanism of the Fe3O4/g-C3N4/rGO photocatalyst is proposed in this paper.


Asunto(s)
Grafito , Nanocompuestos , Grafito/química , Tetraciclina/química , Inteligencia Artificial , Luz , Nanocompuestos/química , Catálisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-36231293

RESUMEN

Arable land resources in karst regions are relatively scarce. The original crop rotation pattern can no longer meet the requirements of productivity development, while different crop rotation patterns have different impacts on the physicochemical properties of the soil. Through field experiments and laboratory analysis, the physicochemical properties and pollution characteristics of the soil during different crop growing stages in rice-rape rotation were investigated systematically. The main results are as follows. During the rice-rape rotation, fine sand in the topsoil experienced the greatest variation. During the rotation, pH variation in the subsoil was greater than that in the topsoil. The soil in paddy fields was poorly ventilated, and the rotation could reduce the redox potential of the soil. In the rotation process, the soil organic matter in the topsoil was higher than that in the subsoil, but the variation of soil organic matter in the topsoil was lower than that in the subsoil. The worst Cd pollution of the topsoil occurred in the seedling stage of rice, while that of the subsoil occurred in the flowering stage of rape; the comprehensive pollution index of Cr and Cd in the subsoil was higher than that in the topsoil. It is of great significance to investigate efficient crop rotation patterns under the conditions of the current productivity for promoting sustainable increases of rape and rice yield, maintaining soil fertility, and improving the soil.


Asunto(s)
Oryza , Contaminantes del Suelo , Agricultura/métodos , Cadmio/análisis , China , Oryza/química , Indicadores de Calidad de la Atención de Salud , Arena , Suelo/química , Contaminantes del Suelo/análisis
7.
Environ Sci Pollut Res Int ; 29(24): 35657-35681, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35257332

RESUMEN

Photocatalytic technology has been widely studied by researchers in the field of environmental purification. This technology can not only completely convert organic pollutants into small molecules of CO2 and H2O through redox reactions but also remove metal ions and other inorganic substances from water. This article reviews the research progress of graphene-based photocatalytic nanocomposites in the treatment of wastewater. First, we elucidate the basic principles of photocatalysis, the types of graphene-based nanocomposites, and the role of graphene in photocatalysis (e.g., graphene can accelerate the separation of photon-hole pairs and increase the intensity and range of light absorption). Second, the preparation, characterization, and application of composites in wastewater are introduced. We also discuss the kinetic model of the photocatalytic degradation of pollutants. Finally, the enhancement mechanism of graphene in terms of photocatalysis is not completely clear, and graphene-based photocatalysts with high catalytic efficiency, low cost, and large-scale production have not yet appeared, so there is an urgent need for more extensive and in-depth research.


Asunto(s)
Cosméticos , Contaminantes Ambientales , Grafito , Nanocompuestos , Preparaciones Farmacéuticas , Aguas Residuales
8.
Ecotoxicol Environ Saf ; 227: 112897, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34655882

RESUMEN

The Wanshan mercury (Hg) mine in Guizhou Province is one of the main Hg-producing mines in China, resulting in serious Hg pollution in soil and wastewater. Therefore, the present study is mainly aimed to investigate the current degree of heavy metal pollution and compared the microbial diversity in the Wanshan Hg mine and its surrounding environment. The results showed the distribution of the pollution load index values was low in the west and high in the east. The northwestern (Aozhai River), northern (Meizi Stream), and southwestern parts of the study area and the area surrounding Erkeng did not reach moderate pollution. Mercury accounted for the majority of the potential ecological risk index values, reaching 67.62%, while the proportions of Cd and As were 15.75% and 10.75%, respectively. Mercury was found mainly in a residual state, which had an average proportion of 71.09%. In the three regions, Proteobacteria and Actinobacteria had the highest relative abundances. According to linear discriminant analysis effect size, the indicator species in the Hg mining area, woodland and cultivated land was f__67-14 (belonging to a family of Solirubrobacterales), Reyranellales and Reyranellaceae, Intrasporangiaceae, respectively. In summary, this study for the very first time estimated that the higher Hg, Cd and As pollution existed in Wanshan Hg mine since their concentration in the all soil samples totally exceeded the standard value (GB15618-2018), while Cd and As pollution in soil was commonly ignored by the previous study. The cultivated land had higher community richness than the mercury mining district and woodland. Our results suggested that the relevant local departments need to take more active measures to solve the problem of high levels of Hg, Cd, and As in the local soil, and prevent their adverse effects on humans.


Asunto(s)
Mercurio , Metales Pesados , Microbiota , Contaminantes del Suelo , China , Monitoreo del Ambiente , Humanos , Mercurio/análisis , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
9.
Materials (Basel) ; 14(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576494

RESUMEN

Reduced graphene oxide loaded with an iron-copper nanocomposite was prepared in this study, using graphene oxide as a carrier and ferrous sulfate, copper chloride and sodium borohydride as raw materials. The obtained material was prepared for eliminating hazardous dye carmine and the binary dye mixture of carmine and Congo red. The process of carmine dye removal by the nanocomposite was modeled and optimized through response surface methodology and artificial intelligence (artificial neural network-particle swarm optimization and artificial neural network-genetic algorithm) based on single-factor experiments. The results demonstrated that the surface area of the nanocomposite was 41.255 m2/g, the pore size distribution was centered at 2.125 nm, and the saturation magnetization was up to 108.33 emu/g. A comparison of the material before and after the reaction showed that the material could theoretically be reused three times. The absolute error between the predicted and experimental values derived by using artificial neural network-particle swarm optimization was the smallest, indicating that this model was suitable to remove carmine from simulated wastewater. The dose factor was the key factor in the adsorption process. This process could be described with the pseudo-second-order kinetic model, and the maximum adsorption capacity was 1848.96 mg/g. The removal rate of the mixed dyes reached 96.85% under the optimal conditions (the dosage of rGO/Fe/Cu was 20 mg, the pH was equal to 4, the initial concentration of the mixed dyes was 500 mg/L, and the reaction time was 14 min), reflecting the excellent adsorption capability of the material.

10.
Environ Monit Assess ; 193(10): 646, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518941

RESUMEN

To explore the spatial heterogeneity of pH and cadmium (Cd) content in the soils of the tea gardens in the plateau mountain regions as well as its driving factors, the pH values, Cd content and other physical and chemical indicators from 423 soil samples were examined. A coefficient of variation method and a semivariance function model was adopted to explore the soils' spatial heterogeneity, and a random forest approach was applied to evaluate the factors influencing environmental Cd under different pH values. The results show that the pH values of the soils of the tea gardens in the plateau mountain regions were within the appropriate range for the growth of tea plants, and soil samples with pH values falling between 4.5 and 6.0 account for 74% of all samples. A comparison against the criteria of risk screening values for the contamination of agricultural land, a component of quantifying soil environmental quality in China, was preformed; it was determined that the content of heavy metal Cd in the soil of the tea gardens did not exceed the limit. The content of soil pH in the research area gradually declined from southwest to northeast, exhibiting two distinct parallel distribution zones running along the southwest-northeast direction. The spatial distribution of the heavy metal Cd content in the soil showed a gradually decreasing trend from north to south, with low-value polygons dominantly appearing in the southeasternmost area and high-value polygons concentrated in the north. When the soil pH ≤ 5.5, it had the largest effect on the Cd content; when 5.5 < pH ≤ 6.5, the physical indicators in soil had a relatively larger impact on the Cd content.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , China , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis ,
11.
Environ Sci Pollut Res Int ; 28(35): 48837-48850, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33929664

RESUMEN

The Wanshan mercury mine, which is an abandoned mine located in northeastern Guizhou Province in Southwest China, has introduced serious Hg pollution to the local ecosystem resulting from previous mining and smelting activities. However, it is not clear to date whether soil pollution has actually improved after treatment by related departments. Therefore, the present study investigates the vegetation community and heavy metal contents of the soil and plants in the Wanshan mercury mining area. The results showed that most of Hg, Cd, As, Cu, and Zn contents in soil samples were higher than those of Soil Environment Quality Risk Control Standard for Soil Contamination of Agricultural Land in China (GB15618-2018). The observed plant species mainly consisted of Compositae, followed by Leguminosae. Unfortunately, this investigation found that heavy metal concentrations in these plants were not extremely high and far below the standard of hyperaccumulator. Despite all this, the maximum values of bioaccumulation factor for Pb, Cd, Hg, As, Cu and Zn were Serissa japonica (Thunb.) Thunb., Rhus chinensis Mill., Potentilla sibbaldii Haller f., Erigeron canadensis L., Clerodendrum bungei var. bungei. and Rhus chinensis Mill., respectively. Regardless of the carcinogenic or noncarcinogenic risk index, the potential risk to urban children is higher. Our results suggest that heavy metal pollution was indeed relieved since their contents in soil significantly decreased in comparison with those reported in other previous studies. This finding provides a reference for the long-term treatment of heavy metal pollution in the local environment and other areas employing analogous environmental protection measures.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Niño , China , Ecosistema , Monitoreo del Ambiente , Humanos , Mercurio/análisis , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-33540934

RESUMEN

Heavy metals in soil are in a high background state in Karst areas, and agricultural activities will affect the bioactivity of heavy metals. The heavy metal (Cd and Cr) bioactivity and their activation effects in rice-rape rotation lands in Karst areas were studied based on field experiments and laboratory analysis, and the influencing factors of heavy metal activity were analyzed based on the physical and chemical properties of soil. The results suggest that the residual fraction was the largest and the exchangeable fraction was the smallest for both Cr and Cd in rice-rape rotation lands in Karst areas. During the rice-rape rotation process, Cd and Cr tended to be released from the residual fraction and transformed into the other four fractions. The fractions with high bioactivity, including the exchangeable fraction and carbonate fraction, increased to different degrees. Rice-rape rotation could activate the activity of soil Cd and Cr in Karst areas. It is also revealed that the activity of soil Cd and Cr in Karst areas was closely associated with soil pH and electric potential (Eh). In the 0-20 cm soil layer, Cr showed a significant negative correlation with pH (r = -0.69, p < 0.05), while both Cr and Cd showed significant negative correlations with Eh, and the correlation coefficients were -0.85 (p < 0.01) and -0.83 (p < 0.01), respectively. In the 20-40 cm soil layer, Cr showed significant negative correlations with Eh, and the correlation coefficient was -0.95 (p < 0.01). No significant correlation between the activity of soil Cd and Cr and soil mechanical composition was observed. This study revealed that special attention should be paid to changes in pH and Eh in consideration of heavy metal activity in the rice-rape rotation process.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/análisis , China , Monitoreo del Ambiente , Metales Pesados/análisis , Rotación , Suelo , Contaminantes del Suelo/análisis
13.
Sci Rep ; 10(1): 14132, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32839460

RESUMEN

In order to make full use of the impact of internal and external factors on the performance of title catalyst for ethyl benzene oxidation, the key internal influencing factors on the catalytic performance were modulated by coordinating and grafting manganese porphyrin to mesoporous and macroporous chitosan, and the important external factors (i.e. oxidation reaction conditions) were optimized using Response Surface Methodology. Under the Response Surface Methodology optimized oxidation reaction conditions (176.56 °C, 0.59 MPa, and 0.25 mg amount of manganese porphyrin), the catalyst could be used at least five times. The ethyl benzene conversion, catalyst turnover numbers, and yields reached up to 51.2%, 4.37 × 106 and 36.4% in average, respectively. Compared with the other optimized oxidation reaction conditions, the corresponding values increased 17%, 26% and 53%. Relative to the manganese porphyrin, the catalytic performance and efficiency of the immobilized catalyst had notably increased.

14.
Ecotoxicol Environ Saf ; 206: 111150, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32853871

RESUMEN

The speciation and activity of heavy metals in farmland were changed with the different soil properties and flooded environment, especially in the complex and rainy environment in soil of Guizhou Province. The objective of this study was to explore the concentrations of a variety of heavy metal activity and the speciation of those heavy metals in rhizosphere soil at different growth stages of Brassica campestris L. in a Karst mountainous area. Tessier's five-stage sequential extraction procedure, the potential ecological risk index, a Bayesian network, accumulation factors, translocation factors and a laboratory simulation experiment were applied in this study. The results showed that (1) no heavy metal concentrations (except the Cd concentration) exceeded the limits of the soil environmental quality risk control standards for soil contamination of agricultural land in China (GB15618-2018). (2) The orders of the accumulation factor and translocation factor values were Zn > Cd > Cu > Pb > Cr and Cd > Cu > Zn > Pb > Cr, respectively. The order of the heavy metal contents of different tissues during the whole growth period was roots > leaves > stems. (3) The indoor simulation test exhibited that the dry-wet alternation and flooding can reduce Cd activity in soil. (4) Redox potential (Eh), rather than pH or organic matter, was the main factor impacting the total content and chemical speciation of heavy metals in the soil, based on a dynamic Bayesian network. Based on the results, we suggest that the activity of heavy metals should be improved by using dry-wet alternation, whereas the proportions of ion-exchangeable forms of heavy metals are relatively low in the study area (except for Cd). Several measures may be taken to enhance soil acidity and reduce the Cd activity during Brassica campestris L. cultivation.


Asunto(s)
Brassica/metabolismo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Agricultura , Teorema de Bayes , China , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Granjas , Metales Pesados/análisis , Rizosfera , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis
15.
Artículo en Inglés | MEDLINE | ID: mdl-32781763

RESUMEN

Due to the impacts of unwise industrial agriculture, extreme precipitation events are increasing in frequency and are accelerating the process of global warming in the karst area. The dynamic change in soil organic carbon (SOC) and its driving factors in cultivated land in the last 35 years were studied by using data from the second national soil survey of China and measurements made in 2015. The results indicated that the SOC per unit area of cultivated land increased by 32.45 × 103 t in the last 35 years in the study area, exhibiting basically the same levels and a slight increasing trend, and the annual average change rate was 0.02 kg C·hm-2·a-1. In terms of spatial distribution, carbon loss areas were mainly concentrated in the middle northern region, western region, and scattered eastern regions of the county. The main factors affecting the change in SOC in the cultivated land in the study area in the last 35 years include nitrogen fertilizer application, stubble, soil thickness, soil total nitrogen, C/N, rock coverage, gravel content, soil organic carbon density (SOCD1980), etc. This study will provide a database for the management of SOC in cultivated land in the future.


Asunto(s)
Agricultura , Carbono/análisis , Suelo , China , Nitrógeno/análisis
16.
Environ Sci Pollut Res Int ; 27(28): 35675-35691, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32601861

RESUMEN

Paddy rice, one of the most important food crops in Southeast Asia, is considered a main source of human exposure to heavy metal contamination because it efficiently accumulates heavy metals. In the present study, of Japonica rice grains, straw, roots, leaves, and husks and rhizosphere paddy soils (0-20 cm and 20-40 cm depth) were collected from Zunyi in northern Guizhou Province, China. The forms of heavy metals, including Cr, Cd, Pb, Cu, and Zn, in the two soil profiles were investigated using Tessier's five-stage sequential extraction procedure. There was no heavy metal pollution in the study area based on the evaluation of the geo-accumulation index and the potential ecological risk index. Accumulation varied from one area to another, and the highest metal accumulation was found in the order of root > stems > leaves. The bioaccumulation factor (BCF) results revealed that during the grain-filling stage, the rice had high BCF values (> 1) for Cd and Zn. The target hazard quotient (THQ) of ingestion peaked for Cd and reached its minimum level for Zn in not only in adults but also in children. The THQ was ranked as Cd > Cu > Pb > Cr > Zn for both adults and children. The hazard index values for adults and children for the five heavy metals were 1.81 × 10-3 and 1.55 × 10-3, respectively, indicating that these metals have little effect on the human body. The lifetime carcinogenic risk values for local adults and children were 4.28 × 10-5 and 5.92 × 10-5, respectively, both of which were within the tolerable to acceptable risk range. In summary, obvious hazards for local adults and children were not observed in this study. Considering the total amount and chemical forms of Cd, it is necessary to notify the appropriate departments about the possible rice contamination caused by Cd in the soil.


Asunto(s)
Metales Pesados/análisis , Oryza , Contaminantes del Suelo/análisis , Adulto , Niño , China , Monitoreo del Ambiente , Granjas , Humanos , Medición de Riesgo , Suelo
17.
Artículo en Inglés | MEDLINE | ID: mdl-32331304

RESUMEN

Karst landforms are widely distributed in Guizhou Province, and the karst terrain is complex. To investigate the spatial distribution characteristics of soil organic carbon (SOC) in topsoil in different karst landforms, a total of 920 samples were taken from different karst landforms. The study areas, Puding, Xingyi, Guanling, Libo and Yinjiang in Guizhou Province, represent the karst plateau (KP), karst peak-cluster depression (KPCD), karst canyon (KC), karst virgin forest (KVF) and karst trough valley (KTV) landforms, respectively. The characteristics of the SOC contents in areas with different vegetation, land use and soil types under different karst landforms were analyzed. The dimensionality of the factors was reduced via principal component analysis, the relationships among SOC content and different factors were subjected to redundancy analysis, and the effects of the main impact factors on SOC were discussed. The results showed that there was a large discrepancy in the SOC contents in the topsoil layers among different types of karst landforms, the changes in the SOC content in the topsoil layer were highly variable, and the discrepancy in the upper soil layer was higher than that in the lower soil layer. The SOC contents in the 0-50 cm topsoil layers in different karst landforms were between 7.76 and 38.29 g·kg-1, the SOC content gradually decreased with increasing soil depth, and the descending order of the SOC contents in different karst landforms was KTV > KVF > KC > KPCD > KP.


Asunto(s)
Carbono , Suelo , China , Ecosistema , Bosques
18.
Artículo en Inglés | MEDLINE | ID: mdl-31671530

RESUMEN

The assessment of soil organic carbon (SOC) in mountainous karst areas is very challenging, due to the high spatial heterogeneity in SOC content and soil type. To study and assess the SOC storage in mountainous karst areas, a total of 22,786 soil samples were collected from 2,854 soil profiles in Guizhou Province in Southwest China. The SOC content in the soil samples was determined by the oxidation of potassium dichromate (K2Cr2O7), followed by titration with iron (II) sulfate (FeSO4). The SOC storage was assessed based on different land uses. The results suggested that the average SOC density in the top 1.00 m of soil associated with different land uses decreased in the following order: Croplands (9.58 kg m-2) > garden lands (9.07 kg m-2) > grasslands (8.07 kg m-2) > forestlands (7.35 kg m-2) > uncultivated lands (6.94 kg m-2). The SOC storage values in the 0.00-0.10 m, 0.00-0.20 m, 0.00-0.30 m and 0.00-1.00 m soil layers of Guizhou Province were 0.50, 0.87, 1.11 and 1.58 Pg, respectively. The SOC in the top 0.30 m of soil accounted for 70.25% of the total within the 0.00-1.00 m layer in Guizhou Province. It was concluded that assessing SOC storage in mountainous karst areas was more accurate when using land use rather than soil type. This result can supply a scientific reference for the accurate assessment of the SOC storage in the karst areas of southwestern China, the islands of Java, northern and central Vietnam, Indonesia, Kampot Province in Cambodia and in the general area of what used to be Yugoslavia, along with other karst areas with similar ecological backgrounds.


Asunto(s)
Agricultura , Carbono/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Suelo/química , China
19.
Artículo en Inglés | MEDLINE | ID: mdl-31151232

RESUMEN

Background: The secondary forests have become the major forest type worldwide, and forest gap was also a common small disturbance in secondary forests. We aimed to analyze the effects of small gap disturbance on the plant species richness of subtropical secondary forest with natural regeneration barriers and examine the relationship between soil topography and plant species in a subtropical Rhododendron secondary forest of the Baili Rhododendron National Nature Reserve. Methods: The major plant species and soil topography gradient factors of the small gaps and closed canopy (control group) were analyzed using two-way ANOVA, multivariate permutational analysis of variance, nonmetric multi-dimensional scaling, random forest, canonical correspondence analysis, redundancy analysis, and a generalized linear model. Results: Small gaps had significant impact on the distribution of soil available potassium (AK), organic carbon to total phosphorus (C/P) ratio rather than slope position for soil pH and calcium (Ca) under closed canopy. Soil pH and AK followed by total phosphorus (TP) were the most important variables explaining the spatial distributions of soil properties in both habitats. Determining the spatial distribution of individual woody plant species were soil pH in small gaps, instead of lower altitude, TP, total potassium (TK) and sodium (Na) concentrations for both habitats. Moreover, Ericaceae and Fagaceae were strongly associated with pH in the small gaps. However, there was soil Na for the herbaceous plant in the closed canopy. The species richness of woody plant species in small gaps was affected significantly by pH, soil water content (SWC), and TK, instead of soil organic carbon (SOC), SWC and C/P ratio in both habitats. Conclusions: Small gaps were not always significantly improved the composition of soil nutrients, but provided a good microenvironment for plant growth, species richness of major woody plant differed between habitats.


Asunto(s)
Biodiversidad , Bosques , Plantas/clasificación , Suelo/química , Altitud , Calcio/análisis , Carbono/análisis , China , Concentración de Iones de Hidrógeno , Fósforo/análisis , Potasio/análisis , Sodio/análisis
20.
ChemistryOpen ; 8(1): 104-113, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30693174

RESUMEN

We aimed at elevating catalytic performances of cobalt tetrakis(pentafluorophenyl)porphyrin (Co TPFPP) through axial coordination, nanocavities, and covalently grafting action. The Co TPFPP was immobilized onto nanoporous and nonporous chitosan, forming Co TPFPP/np- and nonp-CTS catalysts, respectively. The catalysts were characterized by various spectroscopic techniques. The catalytic performances of these catalysts for cyclohexane oxidation under response-surface-methodology-optimized oxidation reaction conditions were estimated and compared. Co TPFPP/np-CTS was an excellent catalyst at aspect of catalytic activity, exhibiting the considerable potential reusability, 24.2 mol % yields (KA oil : cyclohexanone and cyclohexanol) in average, and total turnover frequencies (TOFs) of 3.25×106 h-1. This is attributed to the structural characteristics of the Co TPFPP/np-CTS catalyst: the cobalt porphyrin molecules could be highly scattered on CTS, forming the independent active sites, and were not leached. The axial coordination exerted the most important effect on the catalytic activity, and the covalent grafting action had a decisive effect on the increase of the total TOFs and on the reusability of the catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA