RESUMEN
Six phosphorescence-emitting metal-organic mononuclear Cu(I) complexes, namely four quinoline-containing three-coordinate Cu(I) complexes and two N-heterocyclic carbene-containing four-coordinate Cu(I) complexes, have been successfully developed and fully characterized. All these Cu(I) complexes include the same bis(2-diphenylphosphinophenyl)ether bidentate auxiliary ligand. Significantly, four-coordinate Cu(I) complexes 1 and 2 display typical aggregation-induced emission phenomena. Their solid samples of luminogenic complexes 1-6 emit a variety of different phosphorescence. Furthermore, solid-state phosphorescence of these Cu(I) complexes can be effectively manipulated by external mechanical force. Remarkably, luminophores 1, 2 and 5 exhibit blue-shifted mechanoluminochromism responses, while luminophores 3, 4 and 6 present red-shifted mechanoluminochromism characteristics. All of the observed mechano-responsive phosphorescence changes of solids 1-6 are reversible by the method of solvent fuming. Powder X-ray diffraction results confirm that the reversible mechanically induced phosphorescence changes of complexes 1-6 are due to the mutual transformation of ordered crystalline and metastable amorphous states.
RESUMEN
Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro. Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.
RESUMEN
ATP-binding cassette transporter A1 (ABCA1) has been found to mediate the transfer of cellular cholesterol across the plasma membrane to apolipoprotein A-I (apoA-I), and is essential for the synthesis of high-density lipoprotein. Mutations of the ABCA1 gene may induce Tangier disease and familial hypoalphalipoproteinemia; they may also lead to loss of cellular cholesterol homeostasis in prostate cancer, and increased intracellular cholesterol levels are frequently found in prostate cancer cells. Recent studies have demonstrated that ABCA1 may exert anticancer effects through cellular cholesterol efflux, which has been attracting increasing attention in association with prostate cancer. The aim of the present review was to focus on the current views on prostate cancer progression and the various functions of ABCA1, in order to provide new therapeutic targets for prostate cancer.