Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Lung Cancer ; 178: 198-205, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871344

RESUMEN

INTRODUCTION: Circulating tumor cells (CTCs) and their proliferative ability in lung adenocarcinoma (LUAD) were not well-investigated. We developed a protocol combining an efficient viable CTC isolation and in-vitro cultivation for the CTC enumeration and proliferation to evaluate their clinical significance. METHOD: The peripheral blood of 124 treatment-naïve LUAD patients were processed by a CTC isolation microfluidics, DS platform, followed by in-vitro cultivation. LUAD-specific CTCs were defined by immunostaining of DAPI+/CD45-/(TTF1/CK7)+ and were enumerated upon isolation and after 7-day cultivation. The CTC proliferative ability was evaluated by both the cultured number and the culture index, a ratio of cultured CTC number to the initial CTC number in 2 mL of blood. RESULT: All but two LUAD patients (98.4%) were detected with at least one CTC per 2 mL of blood. Initial CTC numbers did not correlate with metastasis (75 ± 126 for non-metastatic, 87 ± 113 for metastatic groups; P = 0.203). In contrast, both the cultured CTC number (mean: 28, 104, and 185 in stage 0/I, II/III, and IV; P < 0.001), and the culture index (mean: 1.1, 1.7 and 9.3 in stage 0/I, II/III, and IV; P = 0.043) were significantly correlated with the stages. Overall survival analysis within the non-metastatic group (N = 53) showed poor prognosis for patients with elevated cultured counts (cutoff ≥ 30; P = 0.027). CONCLUSION: We implemented a CTC assay in clinical LUAD patients with a high detection rate and cultivation capability. Cultured CTC count and proliferative ability, rather than the crude CTC numbers, highly associated with cancer prognosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Pronóstico , Neoplasias Pulmonares/patología , Análisis de Supervivencia , Biomarcadores de Tumor
2.
Biomater Adv ; 148: 213357, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871348

RESUMEN

Inhibition of cancer metastasis is a fundamental challenge in cancer treatment. We have previously shown that metastasis of cancer cells in the lung is critically promoted by the interaction between the superficial dipeptidyl peptidase IV (DPP IV) expressed on lung endothelial cells and the pericellular polymeric fibronectin (polyFN) of circulating cancer cells. In the present study, we aimed to search for DPP IV fragments with high avidity to polyFN and develop FN-targeted gold nanoparticles (AuNPs) conjugated with DPP IV fragments for treating cancer metastasis. We first identified a DPP IV fragment encompassing amino acids 29-130 of DPP IV, designated DP4A, which contained FN-binding sites and could specifically bind to FN immobilized on gelatin agarose beads. Furthermore, we conjugated maltose binding protein (MBP)-fused DP4A proteins to AuNPs for fabricating a DP4A-AuNP complex and evaluated its FN-targeted activity in vitro and anti-metastatic efficacy in vivo. Our results show that DP4A-AuNP exhibited higher binding avidity to polyFN than DP4A by 9 folds. Furthermore, DP4A-AuNP was more potent than DP4A in inhibiting DPP IV binding to polyFN. In terms of polyFN-targeted effect, DP4A-AuNP interacted with FN-overexpressing cancer cells and was endocytosed into cells 10 to 100 times more efficiently than untargeted MBP-AuNP or PEG-AuNP with no noticeable cytotoxicity. Furthermore, DP4A-AuNP was superior to DP4A in competitive inhibition of cancer cell adhesion to DPP IV. Confocal microscopy analysis revealed that binding of DP4A-AuNP to pericellular FN induced FN clustering without altering its surface expression on cancer cells. Notably, intravenous treatment with DP4A-AuNP significantly reduced metastatic lung tumor nodules and prolonged the survival in the experimental metastatic 4T1 tumor model. Collectively, our findings suggest that the DP4A-AuNP complex with potent FN-targeted effects may have therapeutic potential for prevention and treatment of tumor metastasis to the lung.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Humanos , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Oro/farmacología , Fibronectinas/metabolismo , Células Endoteliales/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario
3.
iScience ; 25(10): 105081, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36204272

RESUMEN

Matching the treatment to an individual patient's tumor state can increase therapeutic efficacy and reduce tumor recurrence. Circulating tumor cells (CTCs) derived from solid tumors are promising subjects for theragnostic analysis. To analyze how CTCs represent tumor states, we established cell lines from CTCs, primary and metastatic tumors from a mouse model and provided phenotypic and multiomic analyses of these cells. CTCs and metastatic cells, but not primary tumor cells, shared stochastic mutations and similar hypomethylation levels at transcription start sites. CTCs and metastatic tumor cells shared a hybrid epithelial/mesenchymal transcriptome state with reduced adhesive and enhanced mobilization characteristics. We tested anti-cancer drugs on tumor cells from a metastatic breast cancer patient. CTC responses mirrored the impact of drugs on metastatic rather than primary tumors. Our multiomic and clinical anti-cancer drug response results reveal that CTCs resemble metastatic tumors and establish CTCs as an ex vivo tool for personalized medicine.

4.
ACS Appl Mater Interfaces ; 10(23): 19436-19448, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29775050

RESUMEN

Nanomaterials with surface functionalized by different chemical groups can either provoke or attenuate the immune responses of the nanomaterials, which is critical to their biomedical efficacies. In this study, we demonstrate that synthetic waterborne polyurethane nanoparticles (PU NPs) can inhibit the macrophage polarization toward the M1 phenotype but not M2 phenotype. The surface-functionalized PU NPs decrease the secretion levels of proinflammatory cytokines (TNF-α and IL-1ß) for M1 macrophages. Specifically, PU NPs with carboxyl groups on the surface exhibit a greater extent of inhibition on M1 polarization than those with amine groups. These water-suspended PU NPs reduce the nuclear factor-κB (NF-κB) activation and suppress the subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome signals. Furthermore, the dried PU films assembled from PU NPs have a similar effect on macrophage polarization and present a smaller shifting foreign body reaction (FBR) in vivo than the conventional poly(l-lactic acid). Taken together, the biodegradable waterborne PU NPs demonstrate surface-dependent immunosuppressive properties and macrophage polarization effects. The findings suggest potential therapeutic applications of PU NPs in anti-inflammation and macrophage-related disorders and propose a mechanism for the low FBR observed for biodegradable PU materials.


Asunto(s)
Macrófagos , Inflamasomas , Nanopartículas , Fenotipo , Poliuretanos
5.
Nanotheranostics ; 1(3): 326-337, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29071196

RESUMEN

Tumor-associated macrophages (TAMs) have the same immunosuppressive effects as M2 macrophages in tumor progression and are correlated with poor-patient prognosis and survival in non-small cell lung cancer (NSCLC). Therefore, TAMs are the potential targets for cancer therapy. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of tumor necrosis factor superfamily and selectively induces cancer cell apoptosis, but not in most normal cells. Nanoparticles coated with multiple ligands can act as multivalent ligands that may actively crosslink cell surface receptors to affect downstream signals. Here, we explored nanogolds coated with TRAIL protein (nanogold-TRAIL complexes) as a potential anti-M2 macrophage drug. The structure of nanogold-TRAIL complexes comprised nanogold (3, 13, or 30 nm) as the core to crosslink multiple TRAIL for exhibition of multivalent property. Nanogold-TRAIL complexes selectively increased the cytotoxicity of TRAIL (30-fold increase in IC50) via changing O-glycosylation levels in M2-polarized macrophages. By testing the TRAIL complex efficacy on nanogold with different sizes and origins as well as on superparamagnetic iron oxide nanoparticles, we further demonstrated that the enhanced cytotoxicity by nanoparticles was dependent on size and surface properties of the nanoparticles. Meanwhile, the nanogold-TRAIL complexes remained nontoxic to M1 macrophages or normal cells. Nanogold-TRAIL complexes thus provide a novel and promising strategy for the improvement of TRAIL-based therapy.

6.
Nanoscale ; 7(48): 20352-64, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26602242

RESUMEN

The interaction of nanoparticles (NPs) with the body immune system is critically important for their biomedical applications. Most NPs stimulate the immune response of macrophages. Here we show that synthetic polyurethane nanoparticles (PU NPs, diameter 34-64 nm) with rich surface COO(-) functional groups (zeta potential -70 to -50 mV) can suppress the immune response of macrophages. The specially-designed PU NPs reduce the gene expression levels of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) for endotoxin-treated macrophages. The PU NPs increase the intracellular calcium of macrophages (4.5-6.5 fold) and activate autophagy. This is in contrast to the autophagy dysfunction generally observed upon NP exposure. These PU NPs may further decrease the nuclear factor-κB-related inflammation via autophagy pathways. The immunosuppressive activities of PU NPs can prevent animal death by inhibiting the macrophage recruitment and proinflammatory responses, confirmed by an in vivo zebrafish model. Therefore, the novel biodegradable PU NPs demonstrate COO(-) dependent immunosuppressive properties without carrying any anti-inflammatory agents. This study suggests that NP surface chemistry may regulate the immune response, which provides a new paradigm for potential applications of NPs in anti-inflammation and immunomodulation.


Asunto(s)
Antiinflamatorios , Citocinas/inmunología , Inmunosupresores , Macrófagos/inmunología , Nanopartículas/química , Poliuretanos , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Inmunosupresores/química , Inmunosupresores/farmacología , Macrófagos/patología , Ratones , Poliuretanos/química , Poliuretanos/farmacología , Pez Cebra/inmunología
7.
Biores Open Access ; 4(1): 89-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26309785

RESUMEN

Autophagy is an important protein quality control mechanism for cells under stress conditions to promote cell survival. Modulation of autophagy on biomaterial substrates is rarely reported. In this study, the autophagy of adipose-derived stem cells (ADSCs) cultured on chitosan (CS) substrates was examined. Compared to the traditional monolayer culture, ADSCs cultured on CS substrates showed spheroid formation as well as a prolonged upregulation of autophagosomal marker-microtubule-associated protein 1 light chain 3 (LC3) II protein expression. In addition, the green fluorescent protein tagged-LC3 (GFP-LC3) expressing ADSCs also revealed more GFP-LC3 puncta on CS substrates. The enhanced autophagy on CS substrates was associated with Ca(2+), while ethylene glycol tetraacetic acid (EGTA), a Ca(2+) chelator, repressed the autophagy in a dose-dependent manner. Moreover, ADSC spheroids on CS substrates demonstrated a higher survival rate and autophagy response upon H2O2 treatment. The upstream components of autophagy signal pathway-UNC51-like kinase 1 (Ulk1), autophagy-related protein 13 (Atg13), and autophagy/beclin-1 regulator 1 (Ambra1) genes were more highly expressed in ADSC spheroids before and after adding H2O2 than those in the conventional culture. EGTA also decreased the cell viability and autophagy-associated gene expression for ADSC spheroids on CS substrates after H2O2 treatment. Therefore, we suggest that three-dimensional (3D) cell culture on CS may confer ADSCs the ability to increase the autophagic flux in response to stimulations in a Ca(2+)-dependent manner.

8.
Antimicrob Agents Chemother ; 59(9): 5619-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149981

RESUMEN

Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses.


Asunto(s)
Antivirales/uso terapéutico , Hemaglutininas Virales/metabolismo , Gripe Humana/tratamiento farmacológico , Serpinas/uso terapéutico , Calicreínas de Tejido/metabolismo , Animales , Western Blotting , Línea Celular , Perros , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Biomaterials ; 35(38): 10070-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25282622

RESUMEN

Cancer drug development has to go through rigorous testing and evaluation processes during pre-clinical in vitro studies. However, the conventional two-dimensional (2D) in vitro culture is often discounted by the insufficiency to present a more typical tumor microenvironment. The multicellular tumor spheroids have been a valuable model to provide more comprehensive assessment of tumor in response to therapeutic strategies. Here, we applied chitosan-hyaluronan (HA) membranes as a platform to promote three-dimensional (3D) tumor spheroid formation. The biological features of tumor spheroids of human non-small cell lung cancer (NSCLC) cells on chitosan-HA membranes were compared to those of 2D cultured cells in vitro. The cells in tumor spheroids cultured on chitosan-HA membranes showed higher levels of stem-like properties and epithelial-mesenchymal transition (EMT) markers, such as NANOG, SOX2, CD44, CD133, N-cadherin, and vimentin, than 2D cultured cells. Moreover, they exhibited enhanced invasive activities and multidrug resistance by the upregulation of MMP2, MMP9, BCRC5, BCL2, MDR1, and ABCG2 as compared with 2D cultured cells. The grafting densities of HA affected the tumor sphere size and mRNA levels of genes on the substrates. These evidences suggest that chitosan-HA membranes may offer a simple and valuable biomaterial platform for rapid generation of tumor spheroids in vitro as well as for further applications in cancer stem cell research and cancer drug screening.


Asunto(s)
Materiales Biocompatibles/síntesis química , Quitosano/química , Transición Epitelial-Mesenquimal/fisiología , Ácido Hialurónico/química , Membranas Artificiales , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/fisiología , Técnicas de Cultivo Celular por Lotes/métodos , Línea Celular Tumoral , Humanos , Fenotipo , Esferoides Celulares/patología , Esferoides Celulares/fisiología , Microambiente Tumoral/fisiología
10.
Eur Cell Mater ; 23: 170-81; discussion 181, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22415803

RESUMEN

Cellular behaviour is controlled by numerous processes, including intracellular signalling pathways that are triggered by the binding of ligands with cell surface receptors. Multivalent ligands have multiple copies of a recognition element that binds to receptors and influences downstream signals. Nanoparticle-ligand complexes may form multivalent structures to crosslink receptors with high avidity and specificity. After conjugation onto gold nanoparticles, galectin-1 (Au-Gal1) bound with higher affinity to Jurkat cells to promote CD45 clustering and inhibition of its phosphatase activity, resulting in enhancement of apoptosis via caspase-dependent pathways. Au-Gal1 injected intra-articularly into rats with collagen-induced arthritis (CIA) promoted apoptosis of CD4+ T cells and reduced pro-inflammatory cytokine levels in the ankle joints as well as ameliorated clinical symptoms of arthritis. These observed therapeutic effects indicate that the multivalent structure of nanoparticle-ligands can regulate the distribution of cell surface receptors and subsequent intracellular signalling, and this may provide new insights into nanoparticle applications.


Asunto(s)
Apoptosis/efectos de los fármacos , Artritis Experimental/tratamiento farmacológico , Galectina 1/administración & dosificación , Oro/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Receptores de Superficie Celular/efectos de los fármacos , Animales , Articulación del Tobillo/diagnóstico por imagen , Articulación del Tobillo/patología , Artritis Experimental/inducido químicamente , Artritis Experimental/diagnóstico por imagen , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Galectina 1/química , Oro/química , Humanos , Inyecciones Intraarticulares , Células Jurkat/efectos de los fármacos , Células Jurkat/metabolismo , Masculino , Nanopartículas del Metal/química , Radiografía , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/metabolismo
11.
J Virol ; 85(19): 10010-20, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21795357

RESUMEN

Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.


Asunto(s)
Antivirales/metabolismo , Galectina 1/metabolismo , Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Animales , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Galectina 1/uso terapéutico , Cinética , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Unión Proteica , Enfermedades de los Roedores/tratamiento farmacológico , Enfermedades de los Roedores/patología , Enfermedades de los Roedores/virología , Resonancia por Plasmón de Superficie , Análisis de Supervivencia , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA