Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017956

RESUMEN

Scavenger receptor class B type I (SR-BI) is abundant in adult mouse and human brains, but its function in the central nervous system (CNS) remains unclear. This study explored the role of SR-BI in epilepsy and its possible underlying mechanism. Expression patterns of SR-BI in the brains of mice with kainic acid (KA)-induced epilepsy were detected using immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting(WB). Behavioral analysis was performed by 24-hour video monitoring and hippocampal local field potential (LFP) recordings were employed to verify the role of SR-BI in epileptogenesis. RNA sequencing (RNA-seq) was used to obtain biological information on SR-BI in the CNS. WB, qPCR, and co-immunoprecipitation (Co-IP) were performed to identify the relationship between SR-BI and the gabapentin receptor α2δ-1.The results showed that SR-BI was primarily co-localized with astrocytes and its expression was down-regulated in the hippocampus of KA mice. Notably, overexpressing SR-BI alleviated the epileptic behavioral phenotype in KA mice. Hippocampal transcriptomic analysis revealed 1043 differentially expressed genes (DEGs) in the SR-BI-overexpressing group. Most DEGs confirmed by RNA-seq analysis were associated with synapses, neuronal projections, neuron development, and ion binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were enriched in the glutamatergic synapse pathway. Furthermore, the gabapentin receptor α2δ-1 decreased with SR-BI overexpression in epileptic mice. Overall, these findings highlight the important role of SR-BI in regulating epileptogenesis and that the gabapentin receptor α2δ-1 is a potential downstream target of SR-BI.

2.
J Neurointerv Surg ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043582

RESUMEN

BACKGROUND: Favorable venous outflow (VO) has been recognized as an independent predictor of excellent clinical outcomes in acute ischemic stroke caused by anterior circulation large vessel occlusion (AIS-LVO) patients who received endovascular treatment (EVT). However, the reasons why VO affects clinical outcomes have not been fully explained. In this study, we aimed to identify the potential mediators of VO affecting prognosis. METHODS: We conducted a multicenter retrospective cohort study of consecutive patients with AIS-LVO who underwent EVT. Baseline computed tomographic angiography (CTA) was applied to assess VO by the Cortical Vein Opacification Score (COVES). The primary outcome was functional independence at 90 days (modified Rankin Scale (mRS) score of 0-2). Classifying subtypes of intracranial hemorrhage (ICH) to explore the relationship between ICH subtypes and VO. Multivariate logistic regression and causal mediation analyses were used to evaluate the relationship among VO, functional independence, and potential mediators. RESULTS: Among 860 AIS-LVO patients undergoing EVT, a total of 515 patients were included in the present study after strict screening. In multivariate logistic regression analysis, favorable VO profiles (defined as COVES 3-6) were significantly associated with a lower incidence of ICH (24.2% vs 46.9%, adjusted odds ratio (aOR) 0.48, 95% confidence interval (CI) 0.30 to 0.77, P=0.002) and a higher proportion of functional independence (58.9% vs 15.0%, aOR 4.07, 95% CI 2.41 to 6.88, P<0.001). Mediation analysis showed that favorable VO profiles significantly reduced the incidence of parencuymal hematoma (PH) 2 accounting for 8.0% (95% CI 0.9% to 19.0%) of its beneficial effect on functional independence. CONCLUSION: This study demonstrated the potential mediating effects of severe ICH for the beneficial effect of favorable VO on clinical prognosis among patients with AIS-LVO who underwent EVT.

3.
Chemosphere ; 355: 141876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570043

RESUMEN

Gestodene (GES) is widely used in human therapy and animal husbandry and is frequently detected in aquatic environments. Although GES adversely affects aquatic organisms at trace levels, its effects on the reproductive biology of fish remain inconclusive. In this study, female zebrafish (Danio rerio) were exposed to environmentally relevant levels of GES for the evaluation of the effects of GES on the reproductive system by using endpoints including gene expression, plasma steroid concentrations, histological and morphological analyses, copulatory behavior, and reproductive output. Adult female zebrafish exposed to environmentally relevant concentrations of GES (4.0, 40.2, and 372.7 ng/L) for 60 d demonstrated stagnant ovarian oocyte development, evidenced by an increase in the percentage of perinuclear and atretic oocytes and a decrease in the percentage of late vitellogenic oocytes. GES-exposed females were less attractive to males and had lower copulatory intimacy than females in control. Consequently, spawning (44.3-49.2 %) and egg fertilization rates (27.9-32.0 %) were decreased. The decreased survival of fertilized eggs and hatching rates were accompanied by increased malformations. These negative effects were associated with abnormal transcriptional levels of gonadal steroid hormones, which were regulated by genes (Hsd17ß3, Hsd11ß2, Hsd20ß, Cyp19a1a, and Cyp11b). Overall, our findings suggest that GES impairs the reproductive system of zebrafish, which may threaten population stability.


Asunto(s)
Norpregnenos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Masculino , Humanos , Femenino , Pez Cebra/metabolismo , Ovario , Hormonas Esteroides Gonadales/metabolismo , Reproducción , Contaminantes Químicos del Agua/metabolismo , Gónadas
4.
Glia ; 72(6): 1082-1095, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385571

RESUMEN

Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.


Asunto(s)
Epilepsia , Vesículas Extracelulares , MicroARNs , Humanos , Astrocitos/metabolismo , Proteína Quinasa C-delta/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Vesículas Extracelulares/metabolismo , Ácido Glutámico/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA