Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Commun ; 12(1): 819, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547302

RESUMEN

Regulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/química , Caspasa 8/química , Proteína de Dominio de Muerte Asociada a Fas/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Dominio Catalítico , Clonación Molecular , Microscopía por Crioelectrón , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Muerte Celular Regulada/genética , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
2.
Cell Rep ; 19(4): 785-797, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28445729

RESUMEN

Formation of the death-inducing signaling complex (DISC) initiates extrinsic apoptosis. Caspase-8 and its regulator cFLIP control death signaling by binding to death-receptor-bound FADD. By elucidating the function of the caspase-8 homolog, caspase-10, we discover that caspase-10 negatively regulates caspase-8-mediated cell death. Significantly, we reveal that caspase-10 reduces DISC association and activation of caspase-8. Furthermore, we extend our co-operative/hierarchical binding model of caspase-8/cFLIP and show that caspase-10 does not compete with caspase-8 for binding to FADD. Utilizing caspase-8-knockout cells, we demonstrate that caspase-8 is required upstream of both cFLIP and caspase-10 and that DISC formation critically depends on the scaffold function of caspase-8. We establish that caspase-10 rewires DISC signaling to NF-κB activation/cell survival and demonstrate that the catalytic activity of caspase-10, and caspase-8, is redundant in gene induction. Thus, our data are consistent with a model in which both caspase-10 and cFLIP coordinately regulate CD95L-mediated signaling for death or survival.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 10/metabolismo , Caspasa 8/metabolismo , Proteína Ligando Fas/farmacología , FN-kappa B/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/antagonistas & inhibidores , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 10/química , Caspasa 10/genética , Caspasa 8/química , Caspasa 8/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Células HeLa , Humanos , Imidazoles/farmacología , Indoles/farmacología , Interleucina-8/genética , Interleucina-8/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Oligopéptidos/farmacología , Interferencia de ARN , ARN Mensajero , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Receptor fas/metabolismo
3.
Mol Cell ; 61(6): 834-49, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990987

RESUMEN

The death-inducing signaling complex (DISC) initiates death receptor-induced apoptosis. DISC assembly and activation are controlled by c-FLIP isoforms, which function as pro-apoptotic (c-FLIPL only) or anti-apoptotic (c-FLIPL/c-FLIPS) regulators of procaspase-8 activation. Current models assume that c-FLIP directly competes with procaspase-8 for recruitment to FADD. Using a functional reconstituted DISC, structure-guided mutagenesis, and quantitative LC-MS/MS, we show that c-FLIPL/S binding to the DISC is instead a co-operative procaspase-8-dependent process. FADD initially recruits procaspase-8, which in turn recruits and heterodimerizes with c-FLIPL/S via a hierarchical binding mechanism. Procaspase-8 activation is regulated by the ratio of unbound c-FLIPL/S to procaspase-8, which determines composition of the procaspase-8:c-FLIPL/S heterodimer. Thus, procaspase-8:c-FLIPL exhibits localized enzymatic activity and is preferentially an activator, promoting DED-mediated procaspase-8 oligomer assembly, whereas procaspase-8:c-FLIPS lacks activity and potently blocks procaspase-8 activation. This co-operative hierarchical binding model explains the dual role of c-FLIPL and crucially defines how c-FLIP isoforms differentially control cell fate.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Caspasa 8/genética , Linaje de la Célula/genética , Isoformas de Proteínas/genética , Apoptosis/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 8/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Humanos , Mutagénesis , Unión Proteica , Isoformas de Proteínas/metabolismo , Espectrometría de Masas en Tándem
4.
Cold Spring Harb Protoc ; 2015(12): pdb.prot087080, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26631121

RESUMEN

This protocol describes an in vitro model for studying the mechanisms of caspase activation and native apoptosome complex assembly in cell-free extracts. Active caspases in dATP-activated lysates are detected by fluorimetry using a tetrapeptide substrate (DEVD) tagged with a fluorophore (AFC), which, when released, produces a real-time readout for caspase-3 and -7 (DEVDase) activity. Gel filtration is used to isolate the apoptosome complex from the activated lysates, and assembly of Apaf-1 and caspase-9 from their monomeric forms into the multiprotein apoptosome can be confirmed via western blot. Apoptosome complex activity can be shown by incubation with exogenous procaspase-3 and -7 followed by fluorimetric bioassay (to confirm functionality of the processed effector caspases) and/or western blotting (for detection of cleaved caspase-3 and -7). A method for preparation of free procaspases for the bioassay is also described.


Asunto(s)
Apoptosomas/química , Apoptosomas/aislamiento & purificación , Sistema Libre de Células , Animales , Western Blotting , Caspasas/análisis , Línea Celular , Cromatografía en Gel , Fluorometría , Humanos , Ratas
5.
Cold Spring Harb Protoc ; 2015(12): pdb.prot087098, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26631122

RESUMEN

This protocol describes activation, isolation, and analysis of the CD95 (APO-1/Fas) death-inducing signaling complex (DISC) using affinity purification. Activation is achieved using a biotin-labeled anti-CD95 antibody and the native DISC complex is captured using streptavidin beads. This approach minimizes both the number of steps involved and any potential nonspecific interactions or cross-reactivity of antibodies commonly seen in immunoprecipitations using unlabeled antibodies and protein A/G beads. Composition of the isolated complex is analyzed via western blot to identify known DISC components, and dimerization-induced autocatalytic processing of procaspase-8 at the DISC can be confirmed by detection of caspase-8 cleavage products. The potential for DISC-associated caspase-8 to activate the caspase cascade can be determined by measuring caspase-8-dependent cleavage of the fluorigenic substrate Ac-IETD.AFC, or by performing a bioassay using exogenous protein substrates.


Asunto(s)
Apoptosis , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/análisis , Complejos Multienzimáticos/química , Complejos Multienzimáticos/aislamiento & purificación , Transducción de Señal , Receptor fas/química , Receptor fas/aislamiento & purificación , Autoanticuerpos/metabolismo , Biotina/metabolismo , Western Blotting , Cromatografía de Afinidad , Humanos , Células Jurkat , Microesferas , Complejos Multienzimáticos/metabolismo , Coloración y Etiquetado , Estreptavidina/metabolismo , Receptor fas/metabolismo
6.
Cold Spring Harb Protoc ; 2015(12): pdb.top070326, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26631130

RESUMEN

Apoptosis is a highly regulated process that can be initiated by activation of death receptors or perturbation of mitochondria causing the release of apoptogenic proteins. This results in the activation of caspases, which are responsible for many of the biochemical and morphological changes associated with apoptosis. Caspases are normally inactive and require activation in a cascade emanating from an "initiator" or activating caspase, which in turn activates a downstream or "effector" caspase. Activation of initiator caspases is tightly regulated and requires the assembly of caspase-9 (via mitochondrial perturbation) or caspase-8/10 (via death receptor ligation) activating complexes, which are termed the apoptosome and the death-inducing signaling complex (DISC), respectively. These large multiprotein complexes can initially be separated according to size by gel filtration chromatography and subsequently analyzed by affinity purification or immunoprecipitation. The advantage of combining these techniques is one can first assess the assembly of individual components into a multiprotein complex, and then assess the size and composition of the native functional signaling platform within a particular cell type alongside a biochemical analysis of the enriched/purified complex. Here, we describe various methods currently used for characterization of the apoptosome and DISC.


Asunto(s)
Apoptosis , Apoptosomas/química , Apoptosomas/metabolismo , Caspasas Iniciadoras/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Transducción de Señal , Línea Celular , Cromatografía de Afinidad/métodos , Cromatografía en Gel/métodos , Humanos , Inmunoprecipitación/métodos , Mitocondrias/metabolismo , Receptores de Muerte Celular/metabolismo
7.
Methods ; 61(2): 98-104, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23485576

RESUMEN

Apoptosis and necroptosis are dependent on the formation/activation of distinct multi-protein complexes; these include the Death-Inducing Signalling Complex (DISC), apoptosome, piddosome, necrosome and ripoptosome. Despite intense research, the mechanisms that regulate assembly/function of several of these cell death signalling platforms remain to be elucidated. It is now increasingly evident that the composition and stoichiometry of components within these key signalling platforms not only determines the final signalling outcome but also the mode of cell death. Characterising these complexes can therefore provide new insights into how cell death is regulated and also how these cell death signalling platforms could potentially be targeted in the context of disease. Large multi-protein complexes can initially be separated according to their size by gel filtration or sucrose density gradient centrifugation followed by subsequent affinity-purification or immunoprecipitation. The advantage of combining these techniques is that you can assess the assembly of individual components into a complex and then assess the size and stoichiometric composition of the native functional signalling complex within a particular cell type. This, alongside reconstitution of a complex from its individual core components can therefore provide new insight into the mechanisms that regulate assembly/function of key multi-protein signalling complexes. Here, we describe the successful application of a range of methodologies that can be used to characterise the assembly of large multi-protein complexes such as the apoptosome, DISC and ripoptosome. Together with their subsequent purification and/or reconstitution, these approaches can provide novel insights into how cell death signalling platforms are regulated in both normal cell physiology and disease.


Asunto(s)
Apoptosis/genética , Apoptosomas/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/aislamiento & purificación , Linfocitos/química , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/aislamiento & purificación , Ligando Inductor de Apoptosis Relacionado con TNF/aislamiento & purificación , Apoptosomas/metabolismo , Línea Celular Tumoral , Centrifugación por Gradiente de Densidad , Cromatografía en Gel , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Regulación de la Expresión Génica , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Multimerización de Proteína , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
8.
Mol Cell ; 47(2): 291-305, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22683266

RESUMEN

Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.


Asunto(s)
Apoptosis , Caspasa 8/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Línea Celular Tumoral , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Células Jurkat , Espectrometría de Masas/métodos , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Receptor fas/química
9.
Exp Cell Res ; 318(11): 1269-77, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22542855

RESUMEN

Cell death is critical to the normal functioning of multi-cellular organisms, playing a central role in development, immunity, inflammation, and cancer progression. Two cell death mechanisms, apoptosis and necroptosis, are dependent on the formation of distinct multi-protein complexes including the DISC, Apoptosome, Piddosome and Necrosome following the induction of cell death by specific stimuli. The role of several of these key multi-protein signalling platforms, namely the DISC, TNFR1 complex I/II, the Necrosome and Ripoptosome, in mediating these pathways will be discussed, as well as the open questions and potential therapeutic benefits of understanding their underlying mechanisms.


Asunto(s)
Muerte Celular , Receptores de Muerte Celular/fisiología , Transducción de Señal , Animales , Humanos , Complejos Multiproteicos , Receptores de Muerte Celular/metabolismo
10.
Mol Cell ; 35(3): 265-79, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19683492

RESUMEN

The death-inducing signaling complex (DISC) is critical for initiation of death-receptor-mediated apoptosis; however, paradoxically, CD95 also signals for cell survival. Here, we reconstitute a functional DISC using only purified CD95, FADD, and procaspase-8 and unveil a two-step activation mechanism involving both dimerization and proteolytic cleavage of procaspase-8 that is obligatory for death-receptor-induced apoptosis. Initially, dimerization yields active procaspase-8 with a very restricted substrate repertoire, limited to itself or c-FLIP. Proteolytic cleavage is then required to fully activate caspase-8, thereby permitting DISC-mediated cleavage of the critical exogenous apoptotic substrates, caspase-3 and Bid. This switch in catalytic activity and substrate range is a key determinant of DISC signaling, as cellular expression of noncleavable procaspase-8 mutants, which undergo DISC-mediated oligomerization, but not cleavage, fails to initiate CD95-induced apoptosis. Thus, using the reconstituted DISC, we have delineated a crucial two-step activation mechanism whereby activated death receptor complexes can trigger death or survival.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/fisiología , Receptor fas/fisiología , Apoptosis/genética , Apoptosis/fisiología , Caspasa 8/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Dimerización , Activación Enzimática , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Humanos , Células Jurkat , Receptor fas/química
11.
J Biol Chem ; 278(45): 44338-47, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12920112

RESUMEN

We have further examined the mechanism by which phorbol ester-mediated protein kinase C (PKC) activation protects against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. We now report that activation of PKC targets death receptor signaling complex formation. Pre-treatment with 12-O-tetradecanoylphorbol-13-acetate (PMA) led to inhibition of TRAIL-induced apoptosis in HeLa cells, which was characterized by a reduction in phosphatidylserine (PS) externalization, decreased caspase-8 processing, and incomplete maturation and activation of caspase-3. These effects of PMA were completely abrogated by the PKC inhibitor, bisindolylmaleimide I (Bis I), clearly implicating PKC in the protective effect of PMA. TRAIL-induced mitochondrial release of the apoptosis mediators cytochrome c and Smac was blocked by PMA. This, together with the observed decrease in Bid cleavage, suggested that PKC activation modulates apical events in TRAIL signaling upstream of mitochondria. This was confirmed by analysis of TRAIL death-inducing signaling complex formation, which was disrupted in PMA-treated cells as evidenced by a marked reduction in Fas-associated death domain protein (FADD) recruitment, an effect that could not be explained by any change in FADD phosphorylation state. In an in vitro binding assay, the intracellular domains of both TRAIL-R1 and TRAIL-R2 bound FADD: activation of PKC significantly inhibited this interaction suggesting that PKC may be targeting key apical components of death receptor signaling. Significantly, this effect was not confined to TRAIL, because isolation of the native TNF receptor signaling complex revealed that PKC activation also inhibited TNF receptor-associated death domain protein recruitment to TNF-R1 and TNF-induced phosphorylation of IkappaB-alpha. Taken together, these results show that PKC activation specifically inhibits the recruitment of key obligatory death domain-containing adaptor proteins to their respective membrane-associated signaling complexes, thereby modulating TRAIL-induced apoptosis and TNF-induced NF-kappaB activation, respectively.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Apoptosis/efectos de los fármacos , Glicoproteínas de Membrana/farmacología , Proteína Quinasa C/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Reguladoras de la Apoptosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3 , Proteínas Portadoras/metabolismo , Caspasa 3 , Caspasa 8 , Caspasa 9 , Caspasas/metabolismo , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteína de Dominio de Muerte Asociada a Fas , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Indoles/farmacología , Maleimidas/farmacología , Mitocondrias/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Fosfatidilserinas/metabolismo , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Ligando Inductor de Apoptosis Relacionado con TNF , Acetato de Tetradecanoilforbol/farmacología
12.
Appl Environ Microbiol ; 68(10): 4965-70, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12324345

RESUMEN

During growth of Pseudomonas putida strain TW3 on 4-nitrotoluene (4NT) or its metabolite 4-nitrobenzoate (4NB), the culture medium gradually becomes yellow-orange with a lambda(max) of 446 nm. The compound producing this color has been isolated and identified as a new phenoxazinone, 2-aminophenoxazin-3-one-7-carboxylate (APOC). This compound is formed more rapidly and in greater quantity when 4-amino-3-hydroxybenzoate (4A3HB) is added to growing cultures of strain TW3 and is also formed nonbiologically when 4A3HB is shaken in mineral salts medium but not in distilled water. It is postulated that APOC is formed by the oxidative dimerization of 4A3HB, although 4A3HB has not been reported to be a metabolite of 4NT or a product of 4NB catabolism by strain TW3. Using the cloned pnb structural genes from TW3, we demonstrated that the formation of the phenoxazinone requires 4-hydroxylaminobenzoate lyase (PnbB) activity, which converts 4-hydroxylaminobenzoate (4HAB) to 3,4-dihydroxybenzoate (protocatechuate) and that 4-nitrobenzoate reductase (PnbA) activity, which causes the accumulation of 4HAB from 4NB, does not on its own result in the formation of APOC. This rules out the possibility that 4A3HB is formed abiotically from 4HAB by a Bamberger rearrangement but suggests that PnbB first acts to effect a Bamberger-like rearrangement of 4HAB to 4A3HB followed by the replacement of the 4-amino group by a hydroxyl to form protocatechuate and that the phenoxazinone is produced as a result of some misrouting of the intermediate 4A3HB from its active site.


Asunto(s)
Amoníaco-Liasas/metabolismo , Nitrobenzoatos/metabolismo , Oxazinas/metabolismo , Pseudomonas putida/metabolismo , Microbiología del Suelo , Biodegradación Ambiental , Nitrobenzoatos/química , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA