Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ann Neurol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874304

RESUMEN

OBJECTIVE: Approximately half of ischemic strokes (IS) in cancer patients are cryptogenic, with many presumed cardioembolic. We evaluated whether there were specific miRNA and mRNA transcriptome architectures in peripheral blood of IS patients with and without comorbid cancer, and between cardioembolic versus noncardioembolic IS etiologies in comorbid cancer. METHODS: We studied patients with cancer and IS (CS; n = 42), stroke only (SO; n = 41), and cancer only (n = 28), and vascular risk factor-matched controls (n = 30). mRNA-Seq and miRNA-Seq data, analyzed with linear regression models, identified differentially expressed genes in CS versus SO and in cardioembolic versus noncardioembolic CS, and miRNA-mRNA regulatory pairs. Network-level analyses identified stroke etiology-specific responses in CS. RESULTS: A total of 2,085 mRNAs and 31 miRNAs were differentially expressed between CS and SO. In CS, 122 and 35 miRNA-mRNA regulatory pairs, and 5 and 3 coexpressed gene modules, were associated with cardioembolic and noncardioembolic CS, respectively. Complement, growth factor, and immune/inflammatory pathways showed differences between IS etiologies in CS. A 15-gene biomarker panel assembled from a derivation cohort (n = 50) correctly classified 81% of CS and 71% of SO participants in a validation cohort (n = 33). Another 15-gene panel correctly identified etiologies for 13 of 13 CS-cardioembolic and 11 of 11 CS-noncardioembolic participants upon cross-validation; 11 of 16 CS-cryptogenic participants were predicted cardioembolic. INTERPRETATION: We discovered unique mRNA and miRNA transcriptome architecture in CS and SO, and in CS with different IS etiologies. Cardioembolic and noncardioembolic etiologies in CS showed unique coexpression networks and potential master regulators. These may help distinguish CS from SO and identify IS etiology in cryptogenic CS patients. ANN NEUROL 2024.

2.
BMC Med ; 21(1): 65, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803375

RESUMEN

BACKGROUND: After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. Peripheral blood cells display distinctive gene expression signatures post-IS and these transcriptional programs reflect changes in immune responses to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of immune and clotting responses at the molecular and cellular level that are involved in acute brain injury and may assist with time-targeted, cell-specific therapy. METHODS: The transcriptomic profiles from peripheral monocytes, neutrophils, and whole blood from 38 ischemic stroke patients and 18 controls were analyzed with RNA-seq as a function of time and etiology after stroke. Differential expression analyses were performed at 0-24 h, 24-48 h, and >48 h following stroke. RESULTS: Unique patterns of temporal gene expression and pathways were distinguished for monocytes, neutrophils, and whole blood with enrichment of interleukin signaling pathways for different time points and stroke etiologies. Compared to control subjects, gene expression was generally upregulated in neutrophils and generally downregulated in monocytes over all times for cardioembolic, large vessel, and small vessel strokes. Self-organizing maps identified gene clusters with similar trajectories of gene expression over time for different stroke causes and sample types. Weighted Gene Co-expression Network Analyses identified modules of co-expressed genes that significantly varied with time after stroke and included hub genes of immunoglobulin genes in whole blood. CONCLUSIONS: Altogether, the identified genes and pathways are critical for understanding how the immune and clotting systems change over time after stroke. This study identifies potential time- and cell-specific biomarkers and treatment targets.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Monocitos/metabolismo , Transcriptoma , Neutrófilos/metabolismo , Accidente Cerebrovascular Isquémico/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes
3.
J Neuroinflammation ; 20(1): 13, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691064

RESUMEN

BACKGROUND: This study identified early immune gene responses in peripheral blood associated with 90-day ischemic stroke (IS) outcomes. METHODS: Peripheral blood samples from the CLEAR trial IS patients at ≤ 3 h, 5 h, and 24 h after stroke were compared to vascular risk factor matched controls. Whole-transcriptome analyses identified genes and networks associated with 90-day IS outcome assessed using the modified Rankin Scale (mRS) and the NIH Stroke Scale (NIHSS). RESULTS: The expression of 467, 526, and 571 genes measured at ≤ 3, 5 and 24 h after IS, respectively, were associated with poor 90-day mRS outcome (mRS ≥ 3), while 49, 100 and 35 genes at ≤ 3, 5 and 24 h after IS were associated with good mRS 90-day outcome (mRS ≤ 2). Poor outcomes were associated with up-regulated genes or pathways such as IL-6, IL-7, IL-1, STAT3, S100A12, acute phase response, P38/MAPK, FGF, TGFA, MMP9, NF-kB, Toll-like receptor, iNOS, and PI3K/AKT. There were 94 probe sets shared for poor outcomes vs. controls at all three time-points that correlated with 90-day mRS; 13 probe sets were shared for good outcomes vs. controls at all three time-points; and 46 probe sets were shared for poor vs. good outcomes at all three time-points that correlated with 90-day mRS. Weighted Gene Co-Expression Network Analysis (WGCNA) revealed modules significantly associated with 90-day outcome for mRS and NIHSS. Poor outcome modules were enriched with up-regulated neutrophil genes and with down-regulated T cell, B cell and monocyte-specific genes; and good outcome modules were associated with erythroblasts and megakaryocytes. Finally, genes identified by genome-wide association studies (GWAS) to contain significant stroke risk loci or loci associated with stroke outcome including ATP2B, GRK5, SH3PXD2A, CENPQ, HOXC4, HDAC9, BNC2, PTPN11, PIK3CG, CDK6, and PDE4DIP were significantly differentially expressed as a function of stroke outcome in the current study. CONCLUSIONS: This study suggests the immune response after stroke may impact functional outcomes and that some of the early post-stroke gene expression markers associated with outcome could be useful for predicting outcomes and could be targets for improving outcomes.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Estudio de Asociación del Genoma Completo , Fosfatidilinositol 3-Quinasas , Accidente Cerebrovascular/complicaciones , Expresión Génica , Resultado del Tratamiento , Isquemia Encefálica/complicaciones
4.
Transl Stroke Res ; 14(4): 572-588, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35821378

RESUMEN

The mechanisms of cognitive decline after intraventricular hemorrhage (IVH) in some patients continue to be poorly understood. Multiple rodent models of intraventricular or subarachnoid hemorrhage have only shown mild or even no cognitive impairment on subsequent behavioral testing. In this study, we show that intraventricular hemorrhage only leads to a significant spatial memory deficit in the Morris water maze if it occurs in the setting of an elevated intracranial pressure (ICP). Histopathological analysis of these IVH + ICP animals did not show evidence of neuronal degeneration in the hippocampal formation after 2 weeks but instead showed significant microglial activation measured by lacunarity and fractal dimensions. RNA sequencing of the hippocampus showed distinct enrichment of genes in the IVH + ICP group but not in IVH alone having activated microglial signaling pathways. The most significantly activated signaling pathway was the classical complement pathway, which is used by microglia to remove synapses, followed by activation of the Fc receptor and DAP12 pathways. Thus, our study lays the groundwork for identifying signaling pathways that could be targeted to ameliorate behavioral deficits after IVH.


Asunto(s)
Hipertensión Intracraneal , Hemorragia Subaracnoidea , Animales , Microglía/patología , Hemorragia Cerebral/patología , Transducción de Señal
5.
Brain ; 145(9): 3179-3186, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35325079

RESUMEN

Cerebral white matter hyperintensities are an important contributor to ageing brain pathology. Progression in white matter hyperintensity volume is associated with cognitive decline and gait impairment. Understanding the factors associated with white matter hyperintensity progression provides insight into pathogenesis and may identify novel treatment targets to improve cognitive health. We postulated that the immune system interaction with cerebral vessels and tissue may be associated with disease progression, and thus evaluated the relationship of blood leucocyte gene expression to progression of cerebral white matter hyperintensities. A brain MRI was obtained at baseline in 166 patients assessed for a cognitive complaint, and then repeated at regular intervals over a median of 5.9 years (interquartile range 3.5-8.2 years). White matter hyperintensity volumes were measured by semi-automated segmentation and percentage change in white matter hyperintensity per year calculated. A venous blood sample obtained at baseline was used to measure whole-genome expression by RNA sequencing. The relationship between change in white matter hyperintensity volumes over time and baseline leucocyte gene expression was analysed. The mean age was 77.8 (SD 7.5) years and 60.2% of participants were female. The median white matter hyperintensity volume was 13.4 ml (SD 17.4 ml). The mean change in white matter hyperintensity volume was 12% per year. Patients were divided in quartiles by percentage change in white matter hyperintensity volume, which was: -3.5% per year in quartile 1, 7.4% per year in quartile 2, 11.7% in quartile 3 and 33.6% per year in quartile 4. There were 148 genes associated with changing white matter hyperintensity volumes over time (P < 0.05 r > |0.2|). Genes and pathways identified have roles in endothelial dysfunction, extracellular matrix remodelling, altered remyelination, inflammation and response to ischaemia. ADAM8, CFD, EPHB4, FPR2, Wnt-B-catenin, focal adhesion kinase and SIGLEC1 were among the identified genes. The progression of white matter hyperintensity volumes over time is associated with genes involved in endothelial dysfunction, extracellular matrix remodelling, altered remyelination, inflammation and response to ischaemia. Further studies are needed to evaluate the role of peripheral inflammation in relation to rate of white matter hyperintensity progression and the contribution to cognitive decline.


Asunto(s)
Disfunción Cognitiva , Leucoaraiosis , Sustancia Blanca , Proteínas ADAM , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/patología , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Inflamación/patología , Leucocitos , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
6.
Brain Hemorrhages ; 3(4): 155-176, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36936603

RESUMEN

The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH in different brain locations. Thus, we investigated peripheral blood mRNA expression of Deep ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA). Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found 774 differentially expressed genes (DEGs) and 2 co-expressed gene modules associated with Deep ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed some common immune/inflammatory responses between locations including Autophagy, T Cell Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2 Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are involved in its removal. This study identifies distinct peripheral blood transcriptome architectures in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical trials, and presents potential location-specific treatment targets.

7.
J Cereb Blood Flow Metab ; 41(6): 1398-1416, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32960689

RESUMEN

Understanding cell-specific transcriptome responses following intracerebral hemorrhage (ICH) and ischemic stroke (IS) will improve knowledge of the immune response to brain injury. Transcriptomic profiles of 141 samples from 48 subjects with ICH, different IS etiologies, and vascular risk factor controls were characterized using RNA-seq in isolated neutrophils, monocytes and whole blood. In both IS and ICH, monocyte genes were down-regulated, whereas neutrophil gene expression changes were generally up-regulated. The monocyte down-regulated response to ICH included innate, adaptive immune, dendritic, NK cell and atherosclerosis signaling. Neutrophil responses to ICH included tRNA charging, mitochondrial dysfunction, and ER stress pathways. Common monocyte and neutrophil responses to ICH included interferon signaling, neuroinflammation, death receptor signaling, and NFAT pathways. Suppressed monocyte responses to IS included interferon and dendritic cell maturation signaling, phagosome formation, and IL-15 signaling. Activated neutrophil responses to IS included oxidative phosphorylation, mTOR, BMP, growth factor signaling, and calpain proteases-mediated blood-brain barrier (BBB) dysfunction. Common monocyte and neutrophil responses to IS included JAK1, JAK3, STAT3, and thrombopoietin signaling. Cell-type and cause-specific approaches will assist the search for future IS and ICH biomarkers and treatments.


Asunto(s)
Hemorragia Cerebral/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Monocitos/metabolismo , Neutrófilos/metabolismo , Transcriptoma , Adulto , Anciano , Hemorragia Cerebral/inmunología , Femenino , Humanos , Accidente Cerebrovascular Isquémico/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Neutrófilos/inmunología
8.
Transl Stroke Res ; 12(5): 754-777, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33206327

RESUMEN

Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.


Asunto(s)
Edema Encefálico , Enfermedades Neuroinflamatorias , Autofagia , Edema Encefálico/genética , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/genética , Edema , Humanos , Inflamación/genética , ARN Mensajero , Receptores de Antígenos de Linfocitos T , Tomografía Computarizada por Rayos X
9.
Front Neurol ; 11: 584695, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193047

RESUMEN

Genome-wide association studies have identified putative ischemic stroke risk genes, yet, their expression after stroke is unexplored in spite of growing interest in elucidating their specific role and identifying candidate genes for stroke treatment. Thus, we took an exploratory approach to investigate sexual dimorphism, alternative splicing, and etiology in putative risk gene expression in blood following cardioembolic, atherosclerotic large vessel disease and small vessel disease/lacunar causes of ischemic stroke in each sex compared to controls. Whole transcriptome arrays assessed 71 putative stroke/vascular risk factor genes for blood RNA expression at gene-, exon-, and alternative splicing-levels. Male (n = 122) and female (n = 123) stroke and control volunteers from three university medical centers were matched for race, age, vascular risk factors, and blood draw time since stroke onset. Exclusion criteria included: previous stroke, drug abuse, subarachnoid or intracerebral hemorrhage, hemorrhagic transformation, infection, dialysis, cancer, hematological abnormalities, thrombolytics, anticoagulants or immunosuppressants. Significant differential gene expression (fold change > |1.2|, p < 0.05, partial correlation > |0.4|) and alternative splicing (false discovery rate p < 0.3) were assessed. At gene level, few were differentially expressed: ALDH2, ALOX5AP, F13A1, and IMPA2 (males, all stroke); ITGB3 (females, cardioembolic); ADD1 (males, atherosclerotic); F13A1, IMPA2 (males, lacunar); and WNK1 (females, lacunar). GP1BA and ITGA2B were alternatively spliced in both sexes (all patients vs. controls). Six genes in males, five in females, were alternatively spliced in all stroke compared to controls. Alternative splicing and exon-level analyses associated many genes with specific etiology in either sex. Of 71 genes, 70 had differential exon-level expression in stroke patients compared to control subjects. Among stroke patients, 24 genes represented by differentially expressed exons were male-specific, six were common between sexes, and two were female-specific. In lacunar stroke, expression of 19 differentially expressed exons representing six genes (ADD1, NINJ2, PCSK9, PEMT, SMARCA4, WNK1) decreased in males and increased in females. Results demonstrate alternative splicing and sexually dimorphic expression of most putative risk genes in stroke patients' blood. Since expression was also often cause-specific, sex, and etiology are factors to consider in stroke treatment trials and genetic association studies as society trends toward more personalized medicine.

10.
Ann Clin Transl Neurol ; 7(9): 1648-1660, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32785988

RESUMEN

OBJECTIVE: Single nucleotide polymorphisms (SNPs) contribute to complex disorders such as ischemic stroke (IS). Since SNPs could affect IS by altering gene expression, we studied the association of common SNPs with changes in mRNA expression (i.e. expression quantitative trait loci; eQTL) in blood after IS. METHODS: RNA and DNA were isolated from 137 patients with acute IS and 138 vascular risk factor controls (VRFC). Gene expression was measured using Affymetrix HTA 2.0 microarrays and SNP variants were assessed with Axiom Biobank Genotyping microarrays. A linear model with a genotype (SNP) × diagnosis (IS and VRFC) interaction term was fit for each SNP-gene pair. RESULTS: The eQTL interaction analysis revealed significant genotype × diagnosis interaction for four SNP-gene pairs as cis-eQTL and 70 SNP-gene pairs as trans-eQTL. Cis-eQTL involved in the inflammatory response to IS included rs56348411 which correlated with neurogranin expression (NRGN), rs78046578 which correlated with CXCL10 expression, rs975903 which correlated with SMAD4 expression, and rs62299879 which correlated with CD38 expression. These four genes are important in regulating inflammatory response and BBB stabilization. SNP rs148791848 was a strong trans-eQTL for anosmin-1 (ANOS1) which is involved in neural cell adhesion and axonal migration and may be important after stroke. INTERPRETATION: This study highlights the contribution of genetic variation to regulating gene expression following IS. Specific inflammatory response to stroke is at least partially influenced by genetic variation. This has implications for progressing toward personalized treatment strategies. Additional research is required to investigate these genes as therapeutic targets.


Asunto(s)
Regulación de la Expresión Génica/genética , Variación Genética/genética , Inflamación/genética , Accidente Cerebrovascular Isquémico/genética , Sitios de Carácter Cuantitativo/genética , Anciano , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
11.
J Cereb Blood Flow Metab ; 40(4): 775-786, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30966854

RESUMEN

Previous studies showed changes in mRNA levels in whole blood of rats and humans, and in miRNA in whole blood of rats following intracerebral hemorrhage (ICH). Thus, this study assessed miRNA and their putative mRNA targets in whole blood of humans following ICH. Whole transcriptome profiling identified altered miRNA and mRNA levels in ICH patients compared to matched controls. Target mRNAs of the differentially expressed miRNAs were identified, and functional analysis of the miRNA-mRNA targets was performed. Twenty-nine miRNAs (22 down, 7 up) and 250 target mRNAs (136 up, 114 down), and 7 small nucleolar RNA changed expression after ICH compared to controls (FDR < 0.05, and fold change ≥ |1.2|). These included Let7i, miR-146a-5p, miR210-5p, miR-93-5p, miR-221, miR-874, miR-17-3p, miR-378a-5p, miR-532-5p, mir-4707, miR-4450, mir-1183, Let-7d-3p, miR-3937, miR-4288, miR-4741, miR-92a-1-3p, miR-4514, mir-4658, mir-3689d-1, miR-4760-3p, and mir-3183. Pathway analysis showed regulated miRNAs/mRNAs were associated with toll-like receptor, natural killer cell, focal adhesion, TGF-ß, phagosome, JAK-STAT, cytokine-cytokine receptor, chemokine, apoptosis, vascular smooth muscle, and RNA degradation signaling. Many of these pathways have been implicated in ICH. The differentially expressed miRNA and their putative mRNA targets and associated pathways may provide diagnostic biomarkers as well as point to therapeutic targets for ICH treatments in humans.


Asunto(s)
Hemorragia Cerebral/sangre , MicroARNs/sangre , ARN Mensajero/sangre , Transcriptoma , Anciano , Apoptosis/genética , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , ARN Mensajero/genética , Regulación hacia Arriba
12.
Stroke ; 50(11): 3259-3264, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31510897

RESUMEN

Background and Purpose- Comorbid cancer is common in patients with acute ischemic stroke (AIS). As blood mRNA profiles can distinguish AIS mechanisms, we hypothesized that cancer-related AIS would have a distinctive gene expression profile. Methods- We evaluated 4 groups of 10 subjects prospectively enrolled at 3 centers from 2009 to 2018. This included the group of interest with active solid tumor cancer and AIS and 3 control groups with active cancer only, AIS only, or vascular risk factors only. Subjects in the AIS-only and cancer-only groups were matched to subjects in the cancer-stroke group by age, sex, and cancer type (if applicable). Subjects in the vascular risk factor group were matched to subjects in the cancer-stroke and stroke-only groups by age, sex, and vascular risk factors. Blood was drawn 72 to 120 hours after stroke. Total RNA was processed using 3' mRNA sequencing. ANOVA and Fisher least significant difference contrast methods were used to estimate differential gene expression between groups. Results- In the cancer-stroke group, 50% of strokes were cryptogenic. All groups had differentially expressed genes that could distinguish among them. Comparing the cancer-stroke group to the stroke-only group and after accounting for cancer-only genes, 438 genes were differentially expressed, including upregulation of multiple genes/pathways implicated in autophagy signaling, immunity/inflammation, and gene regulation, including IL (interleukin)-1, interferon, relaxin, mammalian target of rapamycin signaling, SQSTMI1 (sequestosome-1), and CREB1 (cAMP response element binding protein-1). Conclusions- This study provides evidence for a distinctive molecular signature in blood mRNA expression profiles of patients with cancer-related AIS. Future studies should evaluate whether blood mRNA can predict detection of occult cancer in patients with AIS. Clinical Trial Registration- URL: https://clinicaltrials.gov. Unique identifier: NCT02604667.


Asunto(s)
Isquemia Encefálica , Regulación Neoplásica de la Expresión Génica , Neoplasias , ARN Mensajero/sangre , ARN Neoplásico/sangre , Accidente Cerebrovascular , Transcriptoma , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/sangre , Isquemia Encefálica/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/sangre , Neoplasias/sangre , Neoplasias/complicaciones , Estudios Prospectivos , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/etiología
13.
Ann Clin Transl Neurol ; 6(9): 1748-1756, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31436916

RESUMEN

OBJECTIVE: Though cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients. METHODS: We recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM. RESULTS: One hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM. INTERPRETATION: We propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers.


Asunto(s)
Isquemia Encefálica/genética , Fumar Cigarrillos/genética , Expresión Génica , Accidente Cerebrovascular/genética , Adulto , Anciano , Plaquetas/metabolismo , Isquemia Encefálica/sangre , Fumar Cigarrillos/sangre , Femenino , Humanos , Leucocitos/metabolismo , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/sangre , Transcriptoma
14.
J Neuroinflammation ; 16(1): 56, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836997

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) has a high morbidity and mortality. The peripheral immune system and cross-talk between peripheral blood and brain have been implicated in the ICH immune response. Thus, we delineated the gene networks associated with human ICH in the peripheral blood transcriptome. We also compared the differentially expressed genes in blood following ICH to a prior human study of perihematomal brain tissue. METHODS: We performed peripheral blood whole-transcriptome analysis of ICH and matched vascular risk factor control subjects (n = 66). Gene co-expression network analysis identified groups of co-expressed genes (modules) associated with ICH and their most interconnected genes (hubs). Mixed-effects regression identified differentially expressed genes in ICH compared to controls. RESULTS: Of seven ICH-associated modules, six were enriched with cell-specific genes: one neutrophil module, one neutrophil plus monocyte module, one T cell module, one Natural Killer cell module, and two erythroblast modules. The neutrophil/monocyte modules were enriched in inflammatory/immune pathways; the T cell module in T cell receptor signaling genes; and the Natural Killer cell module in genes regulating alternative splicing, epigenetic, and post-translational modifications. One erythroblast module was enriched in autophagy pathways implicated in experimental ICH, and NRF2 signaling implicated in hematoma clearance. Many hub genes or module members, such as IARS, mTOR, S1PR1, LCK, FYN, SKAP1, ITK, AMBRA1, NLRC4, IL6R, IL17RA, GAB2, MXD1, PIK3CD, NUMB, MAPK14, DDX24, EVL, TDP1, ATG3, WDFY3, GSK3B, STAT3, STX3, CSF3R, PIP4K2A, ANXA3, DGAT2, LRP10, FLOT2, ANK1, CR1, SLC4A1, and DYSF, have been implicated in neuroinflammation, cell death, transcriptional regulation, and some as experimental ICH therapeutic targets. Gene-level analysis revealed 1225 genes (FDR p < 0.05, fold-change > |1.2|) have altered expression in ICH in peripheral blood. There was significant overlap of the 1225 genes with dysregulated genes in human perihematomal brain tissue (p = 7 × 10-3). Overlapping genes were enriched for neutrophil-specific genes (p = 6.4 × 10-08) involved in interleukin, neuroinflammation, apoptosis, and PPAR signaling. CONCLUSIONS: This study delineates key processes underlying ICH pathophysiology, complements experimental ICH findings, and the hub genes significantly expand the list of novel ICH therapeutic targets. The overlap between blood and brain gene responses underscores the importance of examining blood-brain interactions in human ICH.


Asunto(s)
Autofagia/fisiología , Hemorragia Cerebral , Citocinas/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes , Transducción de Señal/fisiología , Estudios de Casos y Controles , Hemorragia Cerebral/genética , Hemorragia Cerebral/inmunología , Hemorragia Cerebral/patología , Citocinas/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Sistema Inmunológico , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transcriptoma/fisiología
15.
Transl Stroke Res ; 10(1): 19-25, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29651704

RESUMEN

The histone deacetylase 9 (HDAC9) polymorphism rs2107595 is associated with an increased risk for large vessel atherosclerotic stroke (LVAS). In humans, there remains a need to better understand this HDAC9 polymorphism's contribution to large vessel stroke. In this pilot study, we evaluated whether the HDAC9 polymorphism rs2107595 is associated with differences in leukocyte gene expression in patients with LVAS. HDAC9 SNP rs2107595 was genotyped in 155 patients (43 LVAS and 112 vascular risk factor controls). RNA isolated from blood was processed on whole genome microarrays. Gene expression was compared between HDAC9 risk allele-positive and risk allele-negative LVAS patients and controls. Functional analysis identified canonical pathways and molecular functions associated with rs2107595 in LVAS. In HDAC9 SNP rs2107595 risk allele-positive LVAS patients, there were 155 genes differentially expressed compared to risk allele-negative patients (fold change > |1.2|, p < 0.05). The 155 genes separated the risk allele-positive and risk allele-negative LVAS patients on a principal component analysis. Pathways associated with HDAC9 risk allele-positive status involved IL-6 signaling, cholesterol efflux, and platelet aggregation. These preliminary data suggest an association with the HDAC9 rs2107595 risk allele and peripheral immune, lipid, and clotting systems in LVAS. Further study is required to evaluate whether these differences are related to large vessel atherosclerosis and stroke risk.


Asunto(s)
Aterosclerosis/genética , Proteínas Sanguíneas/metabolismo , Regulación de la Expresión Génica/genética , Histona Desacetilasas/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Represoras/genética , Accidente Cerebrovascular/genética , Anciano , Aterosclerosis/complicaciones , Proteínas Sanguíneas/genética , Femenino , Humanos , Inflamación/etiología , Inflamación/genética , Metabolismo de los Lípidos/genética , Masculino , Persona de Mediana Edad , Proyectos Piloto , Análisis de Componente Principal , Factores de Riesgo , Transducción de Señal/fisiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología
16.
J Cereb Blood Flow Metab ; 39(9): 1818-1835, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29651892

RESUMEN

Understanding how the blood transcriptome of human intracerebral hemorrhage (ICH) differs from ischemic stroke (IS) and matched controls (CTRL) will improve understanding of immune and coagulation pathways in both disorders. This study examined RNA from 99 human whole-blood samples using GeneChip® HTA 2.0 arrays to assess differentially expressed transcripts of alternatively spliced genes between ICH, IS and CTRL. We used a mixed regression model with FDR-corrected p(Dx) < 0.2 and p < 0.005 and |FC| > 1.2 for individual comparisons. For time-dependent analyses, subjects were divided into four time-points: 0(CTRL), <24 h, 24-48 h, >48 h; 489 transcripts were differentially expressed between ICH and CTRL, and 63 between IS and CTRL. ICH had differentially expressed T-cell receptor and CD36 genes, and iNOS, TLR, macrophage, and T-helper pathways. IS had more non-coding RNA. ICH and IS both had angiogenesis, CTLA4 in T lymphocytes, CD28 in T helper cells, NFAT regulation of immune response, and glucocorticoid receptor signaling pathways. Self-organizing maps revealed 4357 transcripts changing expression over time in ICH, and 1136 in IS. Understanding ICH and IS transcriptomes will be useful for biomarker development, treatment and prevention strategies, and for evaluating how well animal models recapitulate human ICH and IS.


Asunto(s)
Isquemia Encefálica/genética , Hemorragia Cerebral/genética , Accidente Cerebrovascular/genética , Transcriptoma , Anciano , Empalme Alternativo , Isquemia Encefálica/sangre , Hemorragia Cerebral/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/sangre
17.
Stroke ; 47(12): 2896-2903, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27834745

RESUMEN

BACKGROUND AND PURPOSE: Although peripheral blood mRNA and micro-RNA change after ischemic stroke, any role for long noncoding RNA (lncRNA), which comprise most of the genome and have been implicated in various diseases, is unknown. Thus, we hypothesized that lncRNA expression also changes after stroke. METHODS: lncRNA expression was assessed in 266 whole-blood RNA samples drawn once per individual from patients with ischemic stroke and matched with vascular risk factor controls. Differential lncRNA expression was assessed by ANCOVA (P<0.005; fold change>|1.2|), principal components analysis, and hierarchical clustering on a derivation set (n=176) and confirmed on a validation set (n=90). Poststroke temporal lncRNA expression changes were assessed using ANCOVA with confounding factor correction (P<0.005; partial correlation with time since event >|0.4|). Because sexual dimorphism exists in stroke, analyses were performed for each sex separately. RESULTS: A total of 299 lncRNAs were differentially expressed between stroke and control males, whereas 97 lncRNAs were differentially expressed between stroke and control females. Significant changes of lncRNA expression with time after stroke were detected for 49 lncRNAs in men and 31 lncRNAs in women. Some differentially expressed lncRNAs mapped close to genomic locations of previously identified putative stroke-risk genes, including lipoprotein, lipoprotein(a)-like 2, ABO (transferase A, α1-3-N-acetylgalactosaminyltransferase; transferase B, α1-3-galactosyltransferase) blood group, prostaglandin 12 synthase, and α-adducins. CONCLUSIONS: This study provides evidence of altered and sexually dimorphic lncRNA expression in peripheral blood of patients with stroke compared with that of controls and suggests that lncRNAs have potential for stroke biomarker development. Some regulated lncRNA could regulate some previously identified putative stroke-risk genes.


Asunto(s)
Isquemia Encefálica/sangre , ARN Largo no Codificante/sangre , Accidente Cerebrovascular/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Isquemia Encefálica/genética , Femenino , Regulación de la Expresión Génica , Sitios Genéticos , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Accidente Cerebrovascular/genética , Factores de Tiempo
18.
Neurology ; 87(21): 2198-2205, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27784773

RESUMEN

OBJECTIVE: To evaluate microRNA let7i in ischemic stroke and its regulation of leukocytes. METHODS: A total of 212 patients were studied: 106 with acute ischemic stroke and 106 controls matched for risk factors. RNA from circulating leukocytes was isolated from blood collected in PAXgene tubes. Let7i microRNA expression was assessed using TaqMan quantitative reverse transcription PCR. To assess let7i regulation of gene expression in stroke, messenger RNA (mRNA) from leukocytes was measured by whole-genome Human Transcriptome Array Affymetrix microarray. Given microRNAs act to destabilize and degrade their target mRNA, mRNAs that inversely correlated with let7i were identified. To demonstrate let7i posttranscriptional regulation of target genes, a 3' untranslated region luciferase assay was performed. Target protein expression was assessed using ELISA. RESULTS: Let7i was decreased in patients with acute ischemic stroke (fold change -1.70, p < 0.00001). A modest inverse correlation between let7i and NIH Stroke Scale score at admission (r = -0.32, p = 0.02), infarct volume (r = -0.21, p = 0.04), and plasma MMP9 (r = -0.46, p = 0.01) was identified. The decrease in let7i was associated with increased expression of several of its mRNA targets, including CD86, CXCL8, and HMGB1. In vitro studies confirm let7i posttranscriptional regulation of target genes CD86, CXCL8, and HMGB1. Functional analysis predicted let7i regulates pathways involved in leukocyte activation, recruitment, and proliferation including canonical pathways of CD86 signaling in T helper cells, HMGB1 signaling, and CXCL8 signaling. CONCLUSIONS: Let7i is decreased in circulating leukocytes of patients with acute ischemic stroke. Mechanisms by which let7i regulates inflammatory response post stroke include targeting CD86, CXCL8, and HMGB1.


Asunto(s)
Isquemia Encefálica/sangre , Leucocitos/metabolismo , MicroARNs/sangre , Accidente Cerebrovascular/sangre , Antígeno B7-2/sangre , Biomarcadores/sangre , Análisis Químico de la Sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteína HMGB1/sangre , Humanos , Interleucina-8/sangre , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Análisis por Micromatrices , Persona de Mediana Edad , ARN Mensajero/metabolismo , Factores de Riesgo , Índice de Severidad de la Enfermedad
19.
J Cereb Blood Flow Metab ; 36(8): 1374-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26661204

RESUMEN

Because our recent studies have demonstrated that miR-122 decreased in whole blood of patients and in whole blood of rats following ischemic stroke, we tested whether elevating blood miR-122 would improve stroke outcomes in rats. Young adult rats were subjected to a temporary middle cerebral artery occlusion (MCAO) or sham operation. A polyethylene glycol-liposome-based transfection system was used to administer a miR-122 mimic after MCAO. Neurological deficits, brain infarction, brain vessel integrity, adhesion molecule expression and expression of miR-122 target and indirect-target genes were examined in blood at 24 h after MCAO with or without miR-122 treatment. miR-122 decreased in blood after MCAO, whereas miR-122 mimic elevated miR-122 in blood 24 h after MCAO. Intravenous but not intracerebroventricular injection of miR-122 mimic decreased neurological deficits and brain infarction, attenuated ICAM-1 expression, and maintained vessel integrity after MCAO. The miR-122 mimic also down-regulated direct target genes (e.g. Vcam1, Nos2, Pla2g2a) and indirect target genes (e.g. Alox5, Itga2b, Timp3, Il1b, Il2, Mmp8) in blood after MCAO which are predicted to affect cell adhesion, diapedesis, leukocyte extravasation, eicosanoid and atherosclerosis signaling. The data show that elevating miR-122 improves stroke outcomes and we postulate this occurs via downregulating miR-122 target genes in blood leukocytes.


Asunto(s)
Infarto de la Arteria Cerebral Media/sangre , MicroARNs/sangre , MicroARNs/genética , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Sistemas de Liberación de Medicamentos , Infarto de la Arteria Cerebral Media/genética , Inyecciones Intravenosas , Leucocitos/metabolismo , Liposomas , Masculino , MicroARNs/administración & dosificación , Polietilenglicoles/química , Ratas Sprague-Dawley , Resultado del Tratamiento
20.
Transl Stroke Res ; 6(4): 284-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25994285

RESUMEN

Whole transcriptome studies have used 3'-biased expression microarrays to study genes regulated in the blood of stroke patients. However, alternatively spliced messenger RNA isoforms have not been investigated for ischemic stroke or intracerebral hemorrhage (ICH) in animals or humans. Alternative splicing is the mechanism whereby different combinations of exons of a single gene produce distinct mRNA and protein isoforms. Here, we used RNA sequencing (RNA-seq) to determine if alternative splicing differs for ICH and cardioembolic, large vessel and lacunar causes of ischemic stroke compared to controls. RNA libraries from 20 whole blood samples were sequenced to 200 M 2 × 100 bp reads using Illumina sequencing-by-synthesis technology. Differential alternative splicing was assessed using one-way analysis of variance (ANOVA), and differential exon usage was calculated. Four hundred twelve genes displayed differential alternative splicing among the groups (false discovery rate, FDR; p < 0.05). They were involved in cellular immune response, cell death, and cell survival pathways. Distinct expression signatures based on usage of 308 exons (292 genes) differentiated the groups (p < 0.0005; fold change >|1.2|). This pilot study demonstrates that alternatively spliced genes from whole blood differ in ICH compared to ischemic stroke and differ between different ischemic stroke etiologies. These results require validation in a separate cohort.


Asunto(s)
Empalme Alternativo/genética , Hemorragia Cerebral/genética , ARN Mensajero/metabolismo , Accidente Cerebrovascular/genética , Anciano , Isquemia Encefálica/complicaciones , Hemorragia Cerebral/sangre , Exones/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen , Análisis de Secuencia por Matrices de Oligonucleótidos , Proyectos Piloto , Análisis de Componente Principal , Estudios Retrospectivos , Análisis de Secuencia de ARN , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA