Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(24): 3287-3290, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421350

RESUMEN

Frustrated Lewis pair (FLP) hydrogenation catalysts predominantly use alkyl- and aryl-substituted Lewis acids (LA) that offer a limited number of combinations of substituents, limiting our ability to tune their properties and, ultimately, their reactivity. Nevertheless, main-group complexes have numerous ligands available for such purposes, which could enable us to broaden the range of FLP catalysis. Supporting this hypothesis, we demonstrate here that hexacoordinated tin complexes with Schiff base ligands catalyse imine hydrogenation via activation of H2(g). As shown by hydrogen-deuterium scrambling, [Sn(tBu2Salen)(OTf)2] activated H2(g) at 25 °C and 10 bar of H2. After tuning the ligands, we found that [Sn(Salen)Cl2] was the most efficient imine hydrogenation catalyst despite having the lowest activity in H2(g) activation. Moreover, various imines were hydrogenated in yields up to 98% thereby opening up opportunities for developing novel FLP hydrogenation catalysts based on hexacoordinated LA of main-group elements.

2.
Angew Chem Int Ed Engl ; 59(3): 1002-1017, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31364789

RESUMEN

Organocatalysts promote a range of C-N bond forming reactions of amines with CO2 . Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR'NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2 , internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H-bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H-bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline-2,4-diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.

3.
Chem Commun (Camb) ; 55(87): 13089-13092, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31608908

RESUMEN

The tandem synthesis of benzimidazole and other azoles can be achived by the N-formylation of ortho-substituted anilines followed by a cyclization reaction. However, CO2-based N-formylations with hydrosilane reducing agents are base catalyzed whereas the cyclization reaction is acid catalyzed. The mismatch in catalytic conditions means that only one of the steps can be catalyzed in a single pot reaction. While the N-formylation reaction is frequently the target of catalyst development, the cyclization reaction requires comparably much harsher reaction conditions. Identification of these difficulties lead us to the development of a one-pot, two-step synthesis of benzimidazole under mild reaction conditions employing acid catalysts.

4.
Chemistry ; 25(47): 11074-11079, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31112339

RESUMEN

N-formylation of amines combining CO2 as a C1 source with a hydrosilane reducing agent is a convenient route for the synthesis of N-formylated compounds. A large number of salts including ionic liquids (ILs) have been shown to efficiently catalyze the reaction and, yet, the key features of the catalyst remain unclear and the best salt catalysts for the reaction remain unknown. Here we demonstrate the detrimental effect of ion pairing on the catalytic activity and illustrate ways in which the strength of the interaction between the ions can be reduced to enhance interactions and, hence, reactivity with the substrates. In contrast to the current hypothesis, we also show that salt catalysts are more active as bases rather than nucleophiles and identify the pKa where the nucleophilic role of the catalyst switches to the more active basic role. The identification of these critical parameters allows the optimum salt catalyst and conditions for an N-formylation reaction to be predicted.

5.
Chempluschem ; 83(1): 7-18, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31957320

RESUMEN

Membrane technologies enable the facile separation of complex mixtures of gases, vapours, liquids and/or solids under mild conditions. Simultaneous chemical transformations can also be achieved in membranes by using catalytically active membrane materials or embedded catalysts, in so-called membrane reactors. A particular class of membranes containing or composed of ionic liquids (ILs) or polymeric ionic liquids (pILs) have recently emerged. These membranes often exhibit superior transport and separation properties to those of classical polymeric membranes. ILs and pILs have also been extensively studied as separation solvents, catalysts and co-catalysts in similar applications for which membranes are employed. In this review, after introducing ILs and their applications in catalysis, catalytic membranes and recent advances in membrane separation processes based on ILs are described. Finally, the nascent concept of catalytic IL membranes is highlighted, in which catalytically active ILs/pILs are incorporated into membrane technologies to act as a catalytic separation layer.

6.
Angew Chem Int Ed Engl ; 56(35): 10559-10563, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28678430

RESUMEN

Ionic liquids (ILs) are versatile solvents and catalysts for the synthesis of quinazoline-2,4-dione from 2-aminobenzonitrile and CO2 . However, the role of the IL in this reaction is poorly understood. Consequently, we investigated this reaction and showed that the IL cation does not play a significant role in the activation of the substrates, and instead plays a secondary role in controlling the physical properties of the IL. A linear relationship between the pKa of the IL anion (conjugate acid) and the reaction rate was identified with maximum catalyst efficiency observed at a pKa of >14.7 in DMSO. The base-catalyzed reaction is limited by the acidity of the quinazoline-2,4-dione product, which is deprotonated by more basic catalysts, leading to the formation of the quinazolide anion (conjugate acid pKa 14.7). Neutralization of the original catalyst and formation of the quinazolide anion catalyst leads to the observed reaction limit.

7.
Chem Commun (Camb) ; 52(71): 10787-90, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27514459

RESUMEN

The synthesis of cyclic carbonates from epoxides and CO2 is a well-established reaction, whereas the synthesis of cyclic carbonates from diols and CO2 is considerably more challenging, and few efficient catalysts are available. Here, we describe heterocyclic carbene catalysts, including one derived from a cheap and efficient thiazolium salt, for this latter reaction. The reaction proceeds at atmospheric pressure in the presence of an alkyl halide and Cs2CO3. Reaction mechanisms for the transformations involved are also proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA