Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 9(6): e17261, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389077

RESUMEN

Soil aggregation in forest ecosystem is considered as a significant physical process mainly influenced by manure, fertilizers or combination. This aggregation may directly alter the soil nutrient and their fractions in soil. So, soil samples were collected from two types of forests i.e. Natural Korean pine forests (NKPF) and Korean pine plantation (KPP) in order to know the quantities of organic and inorganic Phosphorus (P) amounts in different aggregate sizes viz. >5 mm, 2-5 mm, 0.25-2 mm, <0.25 mm under forest litter and synthetic fertilizer application below the treatments as undisturbed soil (CK), removed litter (RL), altered litter (AL) while the fertilizer treatments were as control; C: (No added N and P,), L: low (5 g N m-2 a-1 + 5 g P m-2 a-1), M: medium (15 g N m-2 a-1 + 10 g P m-2 a-1) and H: high concentration (30 g N m-2 a-1 + 20 g P m-2 a-1), respectively. The results showed that H2O-Pi, NaHCO3-Pi, Residual Pi, SOC were highest retained in larger soil aggregates (>5 mm) and decreased with the decreasing aggregate size, while other variables, i.e., NaOH-Pi, NaHCO3-Po, pH and T-N were not affected in aggregate size. H2O-Pi (48 ppm), NaHCO3-Pi (68 ppm), NaHCO3-Po (80 ppm), NaOH-Po (623 ppm), HCL-Po (67 ppm), SOC (20.36 ± 1.6) was estimated in medium fertilizer treatment. PCA analysis showed that spread/variance of data points on F1 (62.90%) is more than spread/variance of data points on F2 (57.74%) in NKPF and KPP, respectively, while correlation matrix showed high correlation between H2O-Pi and NaOH-Pi (0.63) and H2O-Pi and NaHCO3-Pi (0.63) while a strong negative correlation was present between Res-Pi and Po (-0.61). Moreover, litter inputs increased the organic-P fractions in soil particularly at medium treatment.

2.
PeerJ ; 7: e7262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31372317

RESUMEN

BACKGROUND: Maize-soybean relay-intercropping (MSR) is a famous system of crop production in developing countries. However, maize shading under this system directly affects the light quality and intensity of soybean canopy. This is a challenging scenario in which to implement the MSR system, in terms of varieties selection, planting pattern, and crop management since the duration of crop resource utilization clearly differs. METHODS: Therefore, this experiment aimed to elucidate the effect of leaf excising treatments from maize top to fully clarify the needs and balance of light quality and intensity of intercrop-soybean under MSR in field conditions. The effects of different leaf excising treatments (T0, no removal of leaves; T2, removal of two topmost leaves; T4, removal of four topmost leaves; T6, removal of six topmost leaves from maize plants were applied at first-trifoliate stage (V1) of soybean) on photosynthetically active radiation transmittance (PART), red to far-red ratio (R:FR), morphological and photosynthetic characteristics and total biomass production at second-trifoliate stage (V2), fifth-trifoliate stage (V5), and flowering-stage (R1) of soybean were investigated through field experiments for 2-years under MSR. RESULTS: As compared to T0, treatment T6 increased the PART and R:FR ratio at soybean canopy by 77% and 37% (V2), 70% and 34% (V5), and 41% and 36% (R1), respectively. This improved light environment in T6 considerably enhanced the leaf area index, SPAD values and photosynthetic rate of soybean plants by 66%, 25% and 49% at R1, respectively than T0. Similarly, relative to control, T6 also increased the stem diameter (by 29%) but decreased the plant height (by 23%) which in turn significantly increased stem breaking strength (by 87%) by reducing the lodging rate (by 59%) of soybean plants. Overall, under T6, relay-cropped soybean produced 78% of sole soybean seed-yield, and relay-cropped maize produced 81% of sole maize seed-yield. Our findings implied that by maintaining the optimum level of PART (from 60% to 80%) and R:FR ratio (0.9 to 1.1), we can improve morphological and photosynthetic characteristics of soybean plants in MSR. Therefore, more attention should be paid to the light environment when considering the sustainability of MSR via appropriate planting pattern selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA