Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19613, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179674

RESUMEN

Gene selection is an essential step for the classification of microarray cancer data. Gene expression cancer data (deoxyribonucleic acid microarray] facilitates in computing the robust and concurrent expression of various genes. Particle swarm optimization (PSO) requires simple operators and less number of parameters for tuning the model in gene selection. The selection of a prognostic gene with small redundancy is a great challenge for the researcher as there are a few complications in PSO based selection method. In this research, a new variant of PSO (Self-inertia weight adaptive PSO) has been proposed. In the proposed algorithm, SIW-APSO-ELM is explored to achieve gene selection prediction accuracies. This novel algorithm establishes a balance between the exploitation and exploration capabilities of the improved inertia weight adaptive particle swarm optimization. The self-inertia weight adaptive particle swarm optimization (SIW-APSO) algorithm is employed for solution explorations. Each particle in the SIW-APSO increases its position and velocity iteratively through an evolutionary process. The extreme learning machine (ELM) has been designed for the selection procedure. The proposed method has been employed to identify several genes in the cancer dataset. The classification algorithm contains ELM, K-centroid nearest neighbor, and support vector machine to attain high forecast accuracy as compared to the start-of-the-art methods on microarray cancer datasets that show the effectiveness of the proposed method.


Asunto(s)
Algoritmos , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Máquina de Vectores de Soporte , Perfilación de la Expresión Génica/métodos
2.
Microbiome ; 12(1): 125, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004755

RESUMEN

BACKGROUND: Soybean cyst nematodes (SCN) as animal parasites of plants are not usually interested in killing the host but are rather focused on completing their life cycle to increase population, resulting in substantial yield losses. Remarkably, some agricultural soils after long-term crop monoculture show a significant decline in SCN densities and suppress disease in a sustainable and viable manner. However, relatively little is known about the microbes and mechanisms operating against SCN in such disease-suppressive soils. RESULTS: Greenhouse experiments showed that suppressive soils (S) collected from two provinces of China and transplantation soils (CS, created by mixing 10% S with 90% conducive soils) suppressed SCN. However, SCN suppressiveness was partially lost or completely abolished when S soils were treated with heat (80 °C) and formalin. Bacterial community analysis revealed that the specific suppression in S and CS was mainly associated with the bacterial phylum Bacteroidetes, specifically due to the enrichment of Chitinophaga spp. and Dyadobacter sp., in the cysts. SCN cysts colonized by Chitinophaga spp. showed dramatically reduced egg hatching, with unrecognizable internal body organization of juveniles inside the eggshell due to chitinase activity. Whereas, Dyadobacter sp. cells attached to the surface coat of J2s increased soybean resistance against SCN by triggering the expression of defence-associated genes. The disease-suppressive potential of these bacteria was validated by inoculating them into conducive soil. The Dyadobacter strain alone or in combination with Chitinophaga strains significantly decreased egg densities after one growing cycle of soybeans. In contrast, Chitinophaga strains alone required more than one growing cycle to significantly reduce SCN egg hatching and population density. CONCLUSION: This study revealed how soybean monoculture for decades induced microbiota homeostasis, leading to the formation of SCN-suppressive soil. The high relative abundance of antagonistic bacteria in the cyst suppressed the SCN population both directly and indirectly. Because uncontrolled proliferation will likely lead to quick demise due to host population collapse, obligate parasites like SCN may have evolved to modulate virulence/proliferation to balance these conflicting needs. Video Abstract.


Asunto(s)
Glycine max , Microbiota , Enfermedades de las Plantas , Microbiología del Suelo , Tylenchoidea , Animales , Glycine max/parasitología , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Suelo/parasitología , China , Bacteroidetes/genética , Bacterias/clasificación , Bacterias/genética
3.
ACS Omega ; 9(26): 28791-28805, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973890

RESUMEN

Nonfullerene acceptors (NFAs) have emerged as tremendous materials, efficiently advancing bulk-heterojunction organic solar cells (OSCs) technology. Unlike their fullerene counterparts, NFAs offer the unique advantage of finely tunable electronic energy levels and optical characteristics, which correspond to substantial enhancement in power conversion efficiency of OSCs. Herein, we have introduced a new series of near-infrared NFAs (AY1-AY8) to advance this technology further. Our research deeply investigates the structure-property relationship and thoroughly explores the optical, optoelectronics, photophysical, and photovoltaic characteristics of a synthetic reference molecule (R) and the modeled AY1-AY8 NFAs series. We performed advanced quantum chemical simulations using density functional theory (DFT) and time-dependent DFT methods. Additionally, we also estimated key geometric characteristics such as frontier molecular orbitals, hole-electron overlap, density of states, molecular electrostatic potential, molecular excitation and binding energies, transition density matrix, and reorganizational energy of electrons and holes and compared them with those of a synthetic reference molecule (R). Our findings show that all designed materials (AY1-AY8) exhibit red-shift absorption, improved electronic charge mobility, and low binding and excitation energies compared to R. Notably, these designed materials (AY1-AY8) display significantly narrower electronic energy gaps (E g 1.89-1.71 eV), indicating enhanced charge shifting from the highest occupied molecular orbital to lowest unoccupied molecular orbital and broadening of the absorption spectrum. Moreover, we also revealed a comprehensive study of the donor/acceptor complex of PTB7-Th/AY8 to understand charge shifting between donor and acceptor molecules. Therefore, we strongly recommend this designed (AY1-AY8) series to the experimentalists for the future development of highly efficient OSC devices.

4.
Int J Pharm ; 660: 124301, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851411

RESUMEN

The application of gold nanoparticles (AuNPs) in cancer therapy, particularly targeted therapy of glioblastoma multiforme (GBM), is an up-and-coming field of research that has gained much interest in recent years. GBM is a life-threatening malignant tumour of the brain that currently has a 95 % death rate with an average of 15 months of survival. AuNPs have proven to have wide clinical implications and compelling therapeutic potential in many researches, specifically in GBM treatment. It was found that the reason why AuNPs were highly desired for GBM treatment was due to their unique properties that diversified the applications of AuNPs further to include imaging, diagnosis, and photothermal therapy. These properties include easy synthesis, biocompatibility, and surface functionalization. Various studies also underscored the ability of AuNPs to cross the blood-brain-barrier and selectively target tumour cells while displaying no major safety concerns which resulted in better therapy results. We attempt to bring together some of these studies in this review and provide a comprehensive overview of safety evaluations and current and potential applications of AuNPs in GBM therapy that may result in AuNP-mediated therapy to be the new gold standard for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Oro , Nanopartículas del Metal , Glioblastoma/tratamiento farmacológico , Glioblastoma/terapia , Oro/química , Oro/administración & dosificación , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
5.
Int J Biol Macromol ; 272(Pt 1): 132532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806082

RESUMEN

The study involved preparing and applying edible nano-emulsion coatings containing hydroxypropyl methylcellulose (HPMC), beeswax (BW), and essential oils (thyme, cinnamon, clove, and peppermint) onto sweet cherries. The application was conducted at 4 °C, and the coated cherries were stored for 36 days. This research examines synthesized nano-emulsions physicochemical properties and antibacterial and antifungal activities (C1, C2, and C3). Additionally, it evaluates the quality parameters of control and coated sweet cherry samples. The features of the three edible coatings were assessed, and the findings from the zeta sizer, zeta potential, FTIR, and SEM analyses were deemed satisfactory. It was observed that the application of nano-emulsion coating C1 yielded positive results in maintaining quality attributes such as total suspended solids (TSS), total solids (TS), color, weight loss, respiration rate, firmness, total phenolic contents, and sensory evaluations. Nano-emulsion coating C1 demonstrated efficacy as an antibacterial and antifungal agent against foodborne pathogens E. coli and A. niger, respectively. The current research results are promising and applicable in food industries. The implications suggest that composite nano-emulsion, specifically nano-emulsion edible coatings, can be extensively and effectively used to preserve the quality and shelf life of fruits and vegetables. Furthermore, the environmental waste from conventional food packaging will be minimized using edible packaging applications.


Asunto(s)
Derivados de la Hipromelosa , Aceites Volátiles , Ceras , Ceras/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Derivados de la Hipromelosa/química , Antibacterianos/farmacología , Antibacterianos/química , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , Emulsiones , Cymbopogon/química , Películas Comestibles , Antifúngicos/farmacología , Antifúngicos/química , Escherichia coli/efectos de los fármacos , Frutas/química
6.
Food Chem ; 453: 139612, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38772306

RESUMEN

Fusarium oxysporum and Botrytis cinerea are the main pathogens that cause fruit decay and reduce the postharvest shelf life of cherry tomatoes. Boosting the potency of natural products requires implementing structural modification to combat postharvest pathogens. Herein, we developed a novel Vanillin-Deep Eutectic Agent (V-DEA) from natural compounds and evaluated its effectiveness against tomato fruit rot pathogens. The results demonstrated that V-DEA suppressed mycelium growth and spore germination of F. oxysporum and B. cinerea by enhancing cell membrane permeability, increasing lipid peroxidation, and inhibiting enzyme activities. Importantly, using 8-mM V-DEA successfully prevented postharvest decay in cherry tomatoes, while 4-mM significantly extended their shelf life by reducing weight loss and shriveling, and enhancing key fruit qualities such as total soluble solids, ascorbic acid, tartaric acid, and lycopene. In conclusion, V-DEA exhibits dual properties as a potent pathogen inhibitor and antioxidant activity, thus prolonging the shelf life of cherry tomatoes.


Asunto(s)
Benzaldehídos , Botrytis , Conservación de Alimentos , Frutas , Fusarium , Enfermedades de las Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/química , Solanum lycopersicum/crecimiento & desarrollo , Benzaldehídos/farmacología , Benzaldehídos/química , Botrytis/crecimiento & desarrollo , Botrytis/efectos de los fármacos , Conservación de Alimentos/métodos , Frutas/química , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Almacenamiento de Alimentos
7.
Mol Microbiol ; 121(6): 1164-1181, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38676355

RESUMEN

Latent tuberculosis, caused by dormant Mycobacterium tuberculosis (Mtb), poses a threat to global health through the incubation of undiagnosed infections within the community. Dormant Mtb, which is phenotypically tolerant to antibiotics, accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. TAG is vital to mycobacteria, serving as a cell envelope component and energy reservoir during latency. TAG synthesis occurs by sequential acylation of glycerol-3-phosphate, wherein the second acylation step is catalyzed by acylglycerol-3-phosphate acyltransferase (AGPAT), resulting in the production of phosphatidic acid (PA), a precursor for the synthesis of TAG and various phospholipids. Here, we have characterized a putative acyltransferase of Mtb encoded by Rv3816c. We found that Rv3816c has all four characteristic motifs of AGPAT, exists as a membrane-bound enzyme, and functions as 1-acylglycerol-3-phosphate acyltransferase. The enzyme could transfer the acyl group to acylglycerol-3-phosphate (LPA) from monounsaturated fatty acyl-coenzyme A of chain length 16 or 18 to produce PA. Complementation of Escherichia coli PlsC mutant in vivo by Rv3816c confirmed that it functions as AGPAT. Its active site mutants, H43A and D48A, were incapable of transferring the acyl group to LPA in vitro and were not able to rescue the growth defect of E. coli PlsC mutant in vivo. Identifying Rv3816c as AGPAT and comparing its properties with other AGPAT homologs is not only a step toward understanding the TAG biosynthesis in mycobacteria but has the potential to explore it as a drug target.


Asunto(s)
Mycobacterium tuberculosis , Triglicéridos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Triglicéridos/biosíntesis , Triglicéridos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Acilación , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/biosíntesis , Acilcoenzima A/metabolismo
8.
Chemosphere ; 346: 140544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907169

RESUMEN

2D-Ti3C2Tx MXene nanosheets intercalated with sodium ions (SI-Ti3C2Tx) were synthesized and utilized in simultaneous adsorption and electrochemical regeneration with ciprofloxacin (CPX). The primary focus of this study is to investigate the long-term stability of SI-Ti3C2Tx MXene and to propose the underlying regeneration mechanisms. The successful synthesis of Ti3AlC2, Ti3C2Tx MXene, and SI-Ti3C2Tx MXene was confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Electrochemical regeneration parameters such as charge passed, regeneration time, current density, and electrolyte composition were optimized with values of 787.5 C g-1, 7.5 min, 10 mA cm-2, and 2.5w/v% sodium chloride, respectively, enabling the complete regeneration of the SI-Ti3C2Tx MXene. In addition, the electrochemical regeneration significantly enhanced CPX removal from the SI-Ti3C2Tx MXene owing to partial amorphization, disorderliness, increased functional groups, delamination, and defect creation in the structure. Thus, the synthesized nano-adsorbent has proven helpful in practical water treatment with optimized electrochemical regeneration processes.


Asunto(s)
Ciprofloxacina , Cloruro de Sodio , Adsorción , Espectroscopía de Fotoelectrones
9.
Micromachines (Basel) ; 14(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37630069

RESUMEN

The zeolitic imidazolate framework-67 (ZIF-67) adsorbent and its composites are known to effectively remove organic dyes from aqueous environments. Here, we report a unique crystalline MoS2@ZIF-67 nanocomposite adsorbent for the efficient removal of methyl orange (MO) dye from an aqueous medium. In situ synthetic techniques were used to fabricate a well-crystalline MoS2@ZIF-67 nanocomposite, which was then discovered to be a superior adsorbent to its constituents. The successful synthesis of the nanocomposite was confirmed using XRD, EDX, FTIR, and SEM. The MoS2@ZIF-67 nanocomposite exhibited faster adsorption kinetics and higher dye removal efficiency compared with its constituents. The adsorption kinetic data matched well with the pseudo-second-order model, which signifies that the MO adsorption on the nanocomposite is a chemically driven process. The Langmuir model successfully illustrated the MO dye adsorption on the nanocomposite through comparing the real data with adsorption isotherm models. However, it appears that the Freundlich adsorption isotherm model was also in competition with the Langmuir model. According to the acquired thermodynamics parameters, the adsorption of MO on the MoS2@ZIF-67 nanocomposite surface was determined to be spontaneous and exothermic. The findings of this research open an avenue for using the MoS2@ZIF-67 nanocomposite to efficiently remove organic dyes from wastewater efflux.

10.
Sci Total Environ ; 904: 166438, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633397

RESUMEN

The increasing footprints of lithium (Li) in agroecosystems combined with limited recycling options have raised uncertain consequences for important crops. Nitrogen (N2)-fixation by legumes is an important biological response process, but the cause and effect of Li exposure on plant root-nodule symbiosis and biological N2-fixation (BNF) potential are still unclear. Soybean as a model plant was exposed to Li at low (25 mg kg-1), medium (50 mg kg-1), and high (100 mg kg-1) concentrations. We found that soybean growth and nodulation capacity had a concentration-dependent response to Li. Li at 100 mg kg-1 reduced the nodule numbers, weight, and BNF potential of soybean in comparison to the low and medium levels. Significant shift in soybean growth and BNF after exposure to Li were associated with alteration in the nodule metabolic pathways involved in nitrogen uptake and metabolism (urea, glutamine and glutamate). Importantly, poor soybean nodulation after high Li exposure was due in part to a decreased abundance of bacterium Ensifer in the nodule bacterial community. Also, the dominant N2-fixing bacterium Ensifer was significantly correlated with carbon and nitrogen metabolic pathways. The findings of our study offer mechanistic insights into the environmental and biological impacts of Li on soybean root-nodule symbiosis and N2-acquisition and provide a pathway to develop strategies to mitigate the challenges posed by Li in agroecosystems.


Asunto(s)
Glycine max , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta , Litio , Proteínas de Plantas/metabolismo , Simbiosis , Nitrógeno/metabolismo
11.
Trends Plant Sci ; 28(9): 987-990, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394307

RESUMEN

Plants release chemical signals to interact with their environment when exposed to stress. Khait and colleagues unveiled that plants 'verbalize' stress by emitting airborne sounds. These can train machine learning models to identify plant stressors. This unlocks a new path in plant-environment interactions research with multiple possibilities for future applications.


Asunto(s)
Acústica , Sonido , Aprendizaje Automático , Plantas
12.
Environ Int ; 178: 107985, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364304

RESUMEN

Steroid estrogens (SEs) accumulate in agro-food systems through wastewater treatment and dairy manure, but very little is known about their potential impact on plants and dietary risk to human health. We conducted a meta-analysis to address key questions including, how plants respond to SEs under different environmental conditions, what is the accumulation potential of SEs in distinct plant families, and associated daily dietary intake risks to humans. Based on 517 endpoints, we revealed that various crop species show a heterogeneous response to SEs types (n = 140), SEs concentrations (n = 141), and exposure medium (n = 166). A subsidy-stress response was observed in terms of SEs accumulation for plant growth. The bioaccumulation of SE in plants was shown to be greatest in sand, followed by soil, and hydroponic media. Plants exposed to SEs exhibit considerable changes in physiological and biochemical characteristics. Surprisingly, food crops such as carrot and potato were found as major source of SEs daily intake in food chain but their consequences remains largely unknown. Further field-oriented research is needed to unveil the threshold levels for SEs in soil-plant systems as it may pose a global threat to human health. The state of knowledge presented here may guide towards urgently needed future investigations in this field for reducing the risk in SEs in agro-food systems.


Asunto(s)
Estrógenos , Contaminantes del Suelo , Humanos , Estrógenos/toxicidad , Estrógenos/análisis , Productos Agrícolas , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
13.
ACS Omega ; 8(21): 18891-18900, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273618

RESUMEN

Nonthermal plasma is a well-recognized environmentally advantageous method for producing green fuels. This work used different photocatalysts, including PZO, SxZO, and SxZCx for hydrogen production using an atmospheric argon coaxial dielectric barrier discharge (DBD)-based light source. The photocatalysts were produced using a sol-gel route. The DBD discharge column was filled with water, methanol, and the catalyst to run the reaction under argon plasma. The DBD reactor was operated with a 10 kV AC source to sustain plasma for water splitting. The light absorption study of the tested catalysts revealed a decrease in the band gap with an increase in the concentration of Sr and carbon nanotubes (CNTs) in the Sr/ZnO/CNTs series. The photocatalyst S25ZC2 demonstrated the lowest photoluminescence (PL) intensity, implying the most quenched recombination of charge carriers. The highest H2 evolution rate of 2760 µmol h-1 g-1 was possible with the S25ZC2 catalyst, and the lowest evolution rate of 56 µmol h-1 g-1 was observed with the PZO catalyst. The photocatalytic activity of S25ZC2 was initially high, which decreased slightly over time due to the deactivation of the photocatalyst. The photocatalytic activity decreased from 2760 to 1670 µmol h-1 g-1 at the end of the process.

14.
Plant Physiol Biochem ; 196: 703-711, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36809731

RESUMEN

Nanotechnology has enormous potential for sustainable agriculture, such as improving nutrient use efficiency, plant health, and food production. Nanoscale modulation of the plant-associated microbiota offers an additional valuable opportunity to increase global crop production and ensure future food and nutrient security. Nanomaterials (NMs) applied to agricultural crops can impact plant and soil microbiota, which offers valuable services to host plants, including the acquisition of nutrients, abiotic stress tolerance, and disease suppression. Dissecting the complex interactions between NMs and plants by integrating multi-omic approaches is providing new insights into how NMs can activate host responses and functionality as well as influence native microbial communities. Such nexus and moving beyond descriptive microbiome studies to hypothesis-driven research will foster microbiome engineering and open up opportunities for the development of synthetic microbial communities to provide agronomic solutions. Herein, we first summarize the significant role of NMs and the plant microbiome in crop productivity and then focus on NMs effects on plant-associated microbiota. We outline three urgent priority research areas and call for a transdisciplinary collaborative approach, involving plant scientists, soil scientists, environmental scientists, ecologists, microbiologists, taxonomists, chemists, physicists, and stakeholders, to advance nano-microbiome research. Detailed understanding of the nanomaterial-plant-microbiome interactions and the mechanisms underlying NMs-mediated shifts in the microbiome assembly and functions may help to exploit the services of both nano-objects and microbiota for next-generation crop health.


Asunto(s)
Agricultura , Microbiota , Suelo , Productos Agrícolas , Nanotecnología , Microbiología del Suelo
15.
Chemosphere ; 317: 137770, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36621685

RESUMEN

Most bio-electrochemical systems (BESs) use biotic/abiotic electrode combinations, with platinum-based abiotic electrodes being the most common. However, the non-renewability, cost, and poisonous nature of such electrode systems based on noble metals are major bottlenecks in BES commercialisation. Microbial electrosynthesis (MES), which is a sustainable energy platform that simultaneously treats wastewater and produces chemical commodities, also faces the same problem. In this study, a dual bio-catalysed MES system with a biotic anode and cathode (MES-D) was tested and compared with a biotic cathode/abiotic anode system (MES-S). Different bio-electrochemical tests revealed improved BES performance in MES-D, with a 3.9-fold improvement in current density compared to that of MES-S. Volatile fatty acid (VFA) generation also increased 3.2-, 4.1-, and 1.8-fold in MES-D compared with that in MES-S for acetate, propionate, and butyrate, respectively. The improved performance of MES-D could be attributed to the microbial metabolism at the bioanode, which generated additional electrons, as well as accumulative VFA production by both the bioanode and biocathode chambers. Microbial community analysis revealed the enrichment of electroactive bacteria such as Proteobacteria (60%), Bacteroidetes (67%), and Firmicutes + Proteobacteria + Bacteroidetes (75%) on the MES-S cathode and MES-D cathode and anode, respectively. These results signify the potential of combined bioanode/biocathode BESs such as MES for application in improving energy and chemical commodity production.


Asunto(s)
Acetatos , Ácidos Grasos Volátiles , Aguas Residuales , Electrodos , Dióxido de Carbono/metabolismo
16.
Sci Total Environ ; 855: 158700, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113807

RESUMEN

In mangrove wetlands, leaves make up a high proportion of the plant biomass and can accumulate heavy metals from contaminated sediment. Despite this, it is still unclear how heavy metal concentrations in leaves change as they develop and how metals in senescence leaves are recycled back into the mangrove ecosystems during decomposition. The present study aims to investigate the dynamics of six heavy metals (Cu, Zn, Cr, Ni, Cd, and Pb) in leaves of two common mangrove plants, Avicennia marina and Kandelia obovata, at different stages of development (young, mature, and senescent) and leaf litter decomposition (from 0 to 20 weeks). Based on litterbag experiments in a subtropical mangrove swamp, both plant species showed similar trends in alternations of the six heavy metals during leaf development, that was, decreased in Cu and Zn but increased in Pb, while Cr, Ni, and Cd remained steady. All heavy metals in litter gradually increased in concentration during decomposition. By the end of the 20-weeks decomposition, the concentrations of Cu, Zn, and Cd in decayed leaves were comparable to those in sediment, with Cu, Zn, and Cd at approximately 18, 75, and 0.2 mg·kg-1, respectively, while Cr (66 mg·kg-1), Ni (65 mg·kg-1), and Pb (55 mg·kg-1) were lower than those in sediment, indicating that metals were not retained in litter but recycled back to the sediment. Tannins in mangrove leaf litter might chelate heavy metals, affecting their migration and transformation of heavy metals in estuarine mangrove wetlands. The findings of our study provide insight into the interactions between toxic heavy metals and mangrove plant species during leaf development, representing the first example of how most metals would be retained in leaf litter during decomposition, thereby reducing their release to estuarine and marine ecosystems.


Asunto(s)
Avicennia , Metales Pesados , Rhizophoraceae , Contaminantes Químicos del Agua , Humedales , Ecosistema , Sedimentos Geológicos , Cadmio , Plomo , Monitoreo del Ambiente , Metales Pesados/análisis , Hojas de la Planta/química , Plantas , Contaminantes Químicos del Agua/análisis
17.
Chemosphere ; 310: 136663, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36206918

RESUMEN

Lithium (Li) is gaining attention due to rapid rise in modern industries but their ultimate fingerprints on plants are not well established. Herein, we executed a meta-analysis of the existing recent literature investigating the impact of Li sources and levels on plant species under different growth conditions to understand the existing state of knowledge. Toxic effects of Li exposure in plants varies as a function of medium and interestingly, more negative responses are reported in hydroponic media as compared to soil and foliar application. Additionally, toxic effects of Li vary with Li source materials and LiCl more negatively affected plant development parameters such as plant germination (n = 48) and root biomass (n = 57) and recorded highly uptake in plants (n = 78), while LiNO3 has more negative effects on shoot biomass. The Li at <50 mg L-1 concentrations significantly influenced the plant physiological indicators including plant germination and root biomass, while 50-500 mg L-1 Li concentration influence the biochemical parameters. The dose-response relationship (EC50) ranges regarding the exposure medium of Li sources in plant species were observed 24.6-196.7 ppm respectively. The uptake potential of Li is dose-dependent and their translocation/bioaccumulation remains unknown. Future work should include full life cycle studies of the crops to elucidate the bioaccumulation of Li in edible tissues and to investigate possible trophic transfer of Li.


Asunto(s)
Litio , Contaminantes del Suelo , Litio/análisis , Contaminación Ambiental/análisis , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Bioacumulación , Plantas
18.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555269

RESUMEN

Root-zone restriction induces physiological stress on roots, thus limiting the vegetative and enhancing reproductive development, which promotes fruit quality and growth. Numerous bacterial-related growth-promoting, stress-mitigating, and disease-prevention activities have been described, but none in root-restricted cultivation. The study aimed to understand the activities of grapevine bacterial communities and plant-bacterial relationships to improve fruit quality. We used High-throughput sequencing, edaphic soil factors, and network analysis to explore the impact of restricted cultivation on the diversity, composition and network structure of bacterial communities of rhizosphere soil, roots, leaves, flowers and berries. The bacterial richness, diversity, and networking were indeed regulated by root-zone restriction at all phenological stages, with a peak at the veraison stage, yielding superior fruit quality compared to control plants. Moreover, it also handled the nutrient availability in treated plants, such as available nitrogen (AN) was 3.5, 5.7 and 0.9 folds scarcer at full bloom, veraison and maturity stages, respectively, compared to control plants. Biochemical indicators of the berry have proved that high-quality berry is yielded in association with the bacteria. Cyanobacteria were most abundant in the phyllosphere, Proteobacteria in the rhizosphere, and Firmicutes and Bacteroidetes in the endosphere. These bacterial phyla were most correlated and influenced by different soil factors in control and treated plants. Our findings are a comprehensive approach to the implications of root-zone restriction on the bacterial microbiota, which will assist in directing a more focused procedure to uncover the precise mechanism, which is still undiscovered.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Rizosfera , Microbiota/fisiología , Bacterias/genética , Plantas , Raíces de Plantas/microbiología
19.
Environ Pollut ; 315: 120390, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36244495

RESUMEN

Nanoparticles have emerged as cutting-edge technology for the improvement of crops yield and safe cultivation of agricultural plants, especially in peripheral areas impaired with toxic heavy metals including chromium (Cr). The uncontrolled release of Cr mainly from anthropogenic factors is substantially polluting the surrounding environment, thereby extensively accumulated in soil-plant system. The excessive Cr-accretion in plant tissues disturbed the morph-physiological, biochemical, cellular, metabolic and molecular processes, and impaired the plants functionality. Therefore, it is obligatory to restrict the accumulation and toxic effects of Cr in plant organs. Recent studies on metallic nanoparticles (MNPs) such as iron oxide, silicon dioxide, copper oxide and zinc oxide have approved their efficacy as potent pool to curb the Cr-induced phytotoxicities and improved the plant tolerance. MNPs attenuated the bioaccumulation and phytotoxicity of Cr by utilizing key mechanisms such as improved photosynthetic machinery, regulation of cellular metabolites, greater chelation capacity to bind with Cr, release of corresponding metallic ions, upsurge in the uptake of essential nutrients, activation of antioxidants (enzymatic and non-enzymatic), reduction in oxidative stress, and cellular injuries, thus improvement in plant growth performances. We have briefly discussed the current knowledge and research gaps in existing literature along with possible recommendations for future research. Overall, Cr-detoxification by MNPs may depends upon the target plant species, Cr speciation, plant growth stages (seedling, vegetative and ripening etc.), treatment methods (foliar spray, seed priming and nutrient solution etc.), type, size, dose and coating of applied MNPs, and conditions (hydroponic and soil environment etc.). This review would help plant scientists to develop MNPs based strategies such as nano-fertilizers to alleviate the Cr-accumulation and its toxic impacts. This may leads to safe and healthy food production. The review outcomes can provide new horizons for research in the applications of MNPs for the sustainable agriculture.


Asunto(s)
Nanopartículas del Metal , Contaminantes del Suelo , Cromo/toxicidad , Cromo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Antioxidantes/metabolismo , Estrés Oxidativo , Productos Agrícolas/metabolismo , Nanopartículas del Metal/toxicidad
20.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36146130

RESUMEN

Deep learning (DL) enables the creation of computational models comprising multiple processing layers that learn data representations at multiple levels of abstraction. In the recent past, the use of deep learning has been proliferating, yielding promising results in applications across a growing number of fields, most notably in image processing, medical image analysis, data analysis, and bioinformatics. DL algorithms have also had a significant positive impact through yielding improvements in screening, recognition, segmentation, prediction, and classification applications across different domains of healthcare, such as those concerning the abdomen, cardiac, pathology, and retina. Given the extensive body of recent scientific contributions in this discipline, a comprehensive review of deep learning developments in the domain of diabetic retinopathy (DR) analysis, viz., screening, segmentation, prediction, classification, and validation, is presented here. A critical analysis of the relevant reported techniques is carried out, and the associated advantages and limitations highlighted, culminating in the identification of research gaps and future challenges that help to inform the research community to develop more efficient, robust, and accurate DL models for the various challenges in the monitoring and diagnosis of DR.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Algoritmos , Retinopatía Diabética/diagnóstico , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA