Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
R Soc Open Sci ; 10(3): 221198, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908994

RESUMEN

Understanding the sprinting patterns of individuals with unilateral transfemoral amputation (uTFA) is important for designing improved running-specific prostheses and for prosthetic gait rehabilitation. Continuous relative phase (CRP) analysis acquires clues from movement kinematics and obtains insights into the sprinting coordination of individuals with uTFA. Seven individuals with uTFA sprinted on a 40 m runway. The spatio-temporal parameters, joint and segment angles of the lower limbs were obtained, and CRP analysis was performed on thigh-shank and shank-foot couplings. Subsequently, the asymmetry ratios of the parameters were calculated. Statistical analyses were performed between the lower limbs. Significant differences in the stance time, stance phase percentage, ankle joint angles and CRP of the shank-foot coupling (p < 0.05) were observed between the lower limbs. The primary contributor to these differences could be the structural differences between the lower limbs. Despite the presence of different coordination features in the stance and swing phases between the lower limbs, no significant difference in the coordination patterns of the thigh-shank coupling was observed. This may be a compensation strategy for achieving coordination patterns with improved symmetry between the lower limbs. The results of this study provide novel insights into the sprinting movement patterns of individuals with uTFA.

2.
Front Bioeng Biotechnol ; 11: 1130353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937747

RESUMEN

Adaptive locomotion is an essential behavior for animals to survive. The central pattern generator in the spinal cord is responsible for the basic rhythm of locomotion through sensory feedback coordination, resulting in energy-efficient locomotor patterns. Individuals with symmetrical body proportions exhibit an energy-efficient symmetrical gait on flat ground. In contrast, individuals with lower limb amputation, who have morphologically asymmetrical body proportions, exhibit asymmetrical gait patterns. However, it remains unclear how the nervous system adjusts the control of the lower limbs. Thus, in this study, we investigated how individuals with unilateral transtibial amputation control their left and right lower limbs during locomotion using a two-dimensional neuromusculoskeletal model. The model included a musculoskeletal model with 7 segments and 18 muscles, as well as a neural model with a central pattern generator and sensory feedback systems. Specifically, we examined whether individuals with unilateral transtibial amputation acquire prosthetic gait through a symmetric or asymmetric feedback control for the left and right lower limbs. After acquiring locomotion, the metabolic costs of transport and the symmetry of the spatiotemporal gait factors were evaluated. Regarding the metabolic costs of transportation, the symmetric control model showed values approximately twice those of the asymmetric control model, whereas both scenarios showed asymmetry of spatiotemporal gait patterns. Our results suggest that individuals with unilateral transtibial amputation can reacquire locomotion by modifying sensory feedback parameters. In particular, the model reacquired reasonable locomotion for activities of daily living by re-searching asymmetric feedback parameters for each lower limb. These results could provide insight into effective gait assessment and rehabilitation methods to reacquire locomotion in individuals with unilateral transtibial amputation.

3.
Prosthet Orthot Int ; 47(3): 253-257, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037278

RESUMEN

BACKGROUND: An increased understanding of biomechanical determinants that influence the sprint performance of para-athletes with a unilateral transfemoral amputation will provide us with a basis for better evaluating athletes' sprint performance and would be expected to aid in the development of more effective training methods and running-specific prosthesis selection guidelines. OBJECTIVES: The aim of this study was to investigate the relative contributions of mechanical determinants to the top running speeds of para-athletes with unilateral transfemoral amputation wearing a running-specific prosthesis. STUDY DESIGN: Observational study within the subject. METHODS: Nine para-athletes with unilateral transfemoral amputation wearing a running-specific prosthesis were recruited in this study. They were asked to run at their respective constant top speeds on an instrumented treadmill. From the ground reaction force and spatiotemporal parameters, three mechanical variables-step frequency, mass-specific averaged vertical ground-reaction force, and contact length-were determined for both the affected and unaffected limbs. RESULTS: Stepwise regression analysis showed that the contact length of the affected limb was significant and an independent factor of top running speed ( ß = 0.760, P < 0.05), with a coefficient of determination ( R2 ) of 0.577 ( P < 0.05), whereas the other variables were not associated. CONCLUSION: These results suggest that prosthetic components and alignment are crucial to determining the maximal sprinting performance in uTFA.


Asunto(s)
Amputados , Paratletas , Carrera , Humanos , Fenómenos Biomecánicos , Amputación Quirúrgica
4.
PLoS One ; 17(12): e0279593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548294

RESUMEN

Gait pattern classification in individuals with lower-limb amputation could help in developing personalized prosthetic prescriptions and tailored gait rehabilitation. However, systematic classifications of gait patterns in this population have been scarcely explored. This study aimed to determine whether the gait patterns in individuals with unilateral transfemoral amputation (UTFA) can be clustered into homogeneous subgroups using spatiotemporal parameters across a range of walking speeds. We examined spatiotemporal gait parameters, including step length and cadence, in 25 individuals with UTFA (functional level K3 or K4, all non-vascular amputations) while they walked on a split-belt instrumented treadmill at eight speeds. Hierarchical cluster analysis (HCA) was used to identify clusters with homogeneous gait patterns based on the relationships between step length and cadence. Furthermore, after cluster formation, post-hoc analyses were performed to compare the spatiotemporal parameters and demographic data among the clusters. HCA identified three homogeneous gait pattern clusters, suggesting that individuals with UTFA have several gait patterns. Further, we found significant differences in the participants' body height, sex ratio, and their prosthetic knee component among the clusters. Therefore, gait rehabilitation should be individualized based on body size and prosthetic prescription.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Marcha , Amputación Quirúrgica , Caminata , Extremidad Inferior , Análisis por Conglomerados , Fenómenos Biomecánicos , Amputados/rehabilitación
5.
Sci Rep ; 12(1): 17501, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261465

RESUMEN

Lower-limb amputation imposes a health burden on amputees; thus, gait assessments are required prophylactically and clinically, particularly for individuals with unilateral transfemoral amputation (UTFA). The centre of pressure (COP) during walking is one of the most useful parameters for evaluating gait. Although superimposed COP trajectories reflect the gait characteristics of individuals with neurological disorders, the quantitative characteristics based on the COP trajectories of individuals with UTFA remain unclear. Thus, these COP trajectories were investigated across a range of walking speeds in this study. The COP trajectories were recorded on a split-belt force-instrumented treadmill at eight walking speeds. Asymmetry and variability parameters were compared based on the COP trajectories of 25 individuals with UTFA and 25 able-bodied controls. The COP trajectories of the individuals with UTFA were significantly larger in lateral asymmetry and variability but did not show significant differences in anterior-posterior variability compared with those of the able-bodied controls. Further, the individuals with UTFA demonstrated larger lateral asymmetry at lower speeds. These results suggest that (1) individuals with UTFA adopt orientation-specific balance control strategies during gait and (2) individuals with UTFA could also be exposed to a higher risk of falling at lower walk speeds.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Amputación Quirúrgica/métodos , Caminata , Marcha , Fenómenos Biomecánicos
6.
J Neuroeng Rehabil ; 19(1): 33, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35321725

RESUMEN

BACKGROUND: Individuals with unilateral transfemoral amputation are prone to developing health conditions such as knee osteoarthritis, caused by additional loading on the intact limb. Such individuals who can run again may be at higher risk due to higher ground reaction forces (GRFs) as well as asymmetric gait patterns. The two aims of this study were to investigate manipulating step frequency as a method to reduce GRFs and its effect on asymmetric gait patterns in individuals with unilateral transfemoral amputation while running. METHODS: This is a cross-sectional study. Nine experienced track and field athletes with unilateral transfemoral amputation were recruited for this study. After calculation of each participant's preferred step frequency, each individual ran on an instrumented treadmill for 20 s at nine different metronome frequencies ranging from - 20% to + 20% of the preferred frequency in increments of 5% with the help of a metronome. From the data collected, spatiotemporal parameters, three components of peak GRFs, and the components of GRF impulses were computed. The asymmetry ratio of all parameters was also calculated. Statistical analyses of all data were conducted with appropriate tools based on normality analysis to investigate the main effects of step frequency. For parameters with significant main effects, linear regression analyses were further conducted for each limb. RESULTS: Significant main effects of step frequency were found in multiple parameters (P < 0.01). Both peak GRF and GRF impulse parameters that demonstrated significant main effects tended towards decreasing magnitude with increasing step frequency. Peak vertical GRF in particular demonstrated the most symmetric values between the limbs from - 5% to 0% metronome frequency. All parameters that demonstrated significant effects in asymmetry ratio became more asymmetric with increasing step frequency. CONCLUSIONS: For runners with a unilateral transfemoral amputation, increasing step frequency is a viable method to decrease the magnitude of GRFs. However, with the increase of step frequency, further asymmetry in gait is observed. The relationships between step frequency, GRFs, and the asymmetry ratio in gait may provide insight into the training of runners with unilateral transfemoral amputation for the prevention of injury.


Asunto(s)
Amputados , Miembros Artificiales , Carrera , Amputación Quirúrgica , Fenómenos Biomecánicos , Estudios Transversales , Marcha , Humanos
7.
J Biomech ; 134: 110984, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182901

RESUMEN

During human locomotion, each limb performs step-to-step work on the body center of mass to maintain forward walking. This energy exchange relies on physiological mechanisms which are altered or impaired in transfemoral prosthesis users (TFPUs). Exploring step-to-step energy exchange modifications displayed by TFPUs at greater walking speeds may provide insight into their means for improving gait efficiency. The primary aim of this study was to characterize the effects of walking speed on mechanical work in unilateral TFPUs. The secondary aim assessed the effect of prosthetic knee (microprocessor, mechanical passive) on limb collision work. Twenty-five TFPUs walked with their customary prosthesis on a split-belt instrumented treadmill at eight speeds (0.55-1.53 m/s range), and collision, midstance, and push-off work were calculated for each limb. TFPUs displayed a significant (p < 0.001) bilateral increase in collision work with increased walking speed, but midstance and push-off work increased only for the sound limb and remained nearly constant for the prosthetic limb. TFPUs displayed significantly (p < 0.001) less push-off work generated by the prosthetic limb across all speeds. A microprocessor knee was associated with reduced sound limb collision work across speeds with the peak (negative) power being significantly greater for mechanical knees (p = 0.032). Results suggest that TFPU gait inefficiency may be related to a near complete loss of energy transfer on the prosthetic limb, relying on the sound limb to drive energy changes. Such reliance emphasizes need for attention to the long-term effects on sound limb health and possible benefit of microprocessor knees to offset that impact.


Asunto(s)
Amputados , Miembros Artificiales , Prótesis de la Rodilla , Fenómenos Biomecánicos , Marcha/fisiología , Humanos , Diseño de Prótesis , Caminata , Velocidad al Caminar
8.
J Biomech ; 130: 110845, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34749160

RESUMEN

Individuals with unilateral transfemoral amputation (uTFA) walk asymmetrically. Investigating gait symmetry in ground reaction force (GRF) is critical because asymmetric loading on the residual limb can result in injury. The aim of this study was to investigate the GRF of individuals with uTFA by systematically controlling their walking at eight speeds(2.0-5.5 km/h with increments of 0.5 km/h) on a treadmill. Forty-eight individuals participated in this study, which included 24 individuals with uTFA (K3 and K4) and 24 individuals without amputation. GRFs (anteroposterior, mediolateral, and vertical) of the prosthetic and intact limb steps were collected for the individuals with uTFA and those of the right limb were collected for the control group. Peak force values of the GRF components, temporal parameters, impulses, and their asymmetry ratios were investigated and statistically analyzed. With an increasing walking speed, the magnitude of GRF changed gradually; individuals with uTFA exhibited increased GRF asymmetry in the vertical and mediolateral components, while that of the anteroposterior component remained constant. uTFA individuals typically maintained a constant asymmetry ratio in the mediolateral and anteroposterior (braking and propulsive) GRF impulses across a wide range of walking speeds. This result suggests that individuals with uTFA may cope with various walking speeds by maintaining symmetric mediolateral and anteroposterior impulses. The data provided in this study can serve as normative data for the GRF and its symmetry across a range of walking speeds in individuals with uTFA.


Asunto(s)
Amputados , Miembros Artificiales , Fenómenos Biomecánicos , Marcha , Humanos , Caminata , Velocidad al Caminar
9.
Front Bioeng Biotechnol ; 10: 1041060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36727041

RESUMEN

The asymmetrical gait of individuals with unilateral transfemoral amputation has been well documented. However, there is not a wealth of investigation into asymmetries during the double limb stance depending on whether the intact or prosthetic limb is leading. The first aim of this study was to compare ground reaction forces during the double limb stance of individuals with unilateral transfemoral amputation depending on whether their intact (initial double limb stance) or prosthetic (terminal double limb stance) limb was leading. The second aim of this study was to compare the asymmetry ratio of ground reaction forces during the double limb stance between individuals with and without unilateral transfemoral amputation. Thirty individuals, fifteen with unilateral transfemoral amputation and fifteen who were able-bodied, were recruited for this study. Each individual walked on an instrumented treadmill for 30 s at eight different speeds, ranging from 2.0 km/h to 5.5 km/h with .5 km/h increments. Ground reaction force parameters, temporal parameters, and asymmetry ratios of all parameters were computed from the data collected. The appropriate statistical analyses of all data based on normality were conducted to investigate the aims of this study. Significant main effects of speed, double limb stance, and their interactions were found for most parameters (p < .01 or p < .05). Individuals with unilateral transfemoral amputation spent a longer duration in terminal double limb stance than initial double limb stance at all tested speeds. They also experienced significantly higher peak vertical ground reaction force during initial double limb stance compared to terminal double limb stance with increasing walking speed. However, during terminal double limb stance, higher anteroposterior ground reaction force at initial contact was found when compared to initial double limb stance. Significant differences between individuals with unilateral transfemoral amputation and able-bodied individuals were found in asymmetry ratios for peak vertical ground reaction force, anteroposterior ground reaction force, anteroposterior shear, and mediolateral shear at all tested speeds. Asymmetrical loading persists in individuals with unilateral transfemoral amputation during double limb stance. Increasing walking speed increased ground reaction force loading asymmetries, which may make individuals with unilateral transfemoral amputation more susceptible to knee osteoarthritis or other musculoskeletal disorders. Further study is necessary to develop ideal gait strategies for the minimization of gait asymmetry in individuals with unilateral transfemoral amputation.

10.
Front Bioeng Biotechnol ; 9: 793651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35024365

RESUMEN

Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like "bouncing step" using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb's step and decelerated in the unaffected limb's step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running.

11.
Front Neurorobot ; 13: 79, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616276

RESUMEN

Bipedal locomotion is a basic motor activity that requires simultaneous control of multiple muscles. Physiological experiments suggest that the nervous system controls bipedal locomotion efficiently by using motor modules of synergistic muscle activations. If these modules were merged, abnormal locomotion patterns would be realized as observed in patients with neural impairments such as chronic stroke. However, sub-acute patients have been reported not to show such merged motor modules. Therefore, in this study, we examined what conditions in the nervous system merges motor modules. we built a two-dimensional bipedal locomotion model that included a musculoskeletal model with 7 segments and 18 muscles, a neural system with a hierarchical central pattern generator (CPG), and various feedback inputs from reflex organs. The CPG generated synergistic muscle activations comprising 5 motor modules to produce locomotion phases. Our model succeeded to acquire stable locomotion by using the motor modules and reflexes. Next, we examined how a pathological condition altered motor modules. Specifically, we weakened neural inputs to muscles on one leg to simulate a stroke condition. Immediately after the simulated stroke, the model did not walk. Then, internal parameters were modified to recover stable locomotion. We refitted either (a) reflex parameters or (b) CPG parameters to compensate the locomotion by adapting (a) reflexes or (b) the controller. Stable locomotion was recovered in both conditions. However the motor modules were merged only in (b). These results suggest that light or sub-acute stroke patients, who can compensate stable locomotion by just adapting reflexes, would not show merge of motor modules, whereas severe or chronic patients, who needed to adapt the controller for compensation, would show the merge, as consistent with experimental findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA