Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cogn Neurodyn ; 16(2): 283-296, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35401874

RESUMEN

Sensory cortices are defined by responses to physical stimulation in specific modalities. Recently, additional associatively induced responses have been reported for stimuli other than the main specific modality for each cortex in the human and mammalian brain. In this study, to investigate a type of consolidation, associative responses in the guinea pig cortices (auditory, visual, and somatosensory) were simultaneously measured using optical imaging after first- or second-order conditioning comprising foot shock as an aversive stimulus and tone and light as sensory stimuli. Our findings indicated that (1) after the first- and second-order conditioning, associative responses in each cortical area were additionally induced to stimulate the other specific modality; (2) an associative response to sensory conditioning with tone and light was also seen as a change in the response at the neuronal level without behavioral phenomena; and (3) when fear conditioning with light and foot shock was applied before sensory conditioning with tone and light, the associative response to foot shock in the primary visual cortex (V1) was decreased (extinction) compared with the response after the first-order fear conditioning, whereas the associative response was increased (facilitation) for fear conditioning after sensory conditioning. Our results suggest that various types of bottom-up information are consolidated as associative responses induced in the cortices, which are traced repetitively or alternatively by a change in plasticity involving facilitation and extinction in the cortical network. This information-combining process of cortical responses may play a crucial role in the dynamic linking of memory in the brain.

2.
Cell Stem Cell ; 22(1): 91-103.e5, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29276141

RESUMEN

Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration.


Asunto(s)
Reprogramación Celular , Vectores Genéticos/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Virus Sendai/genética , Potenciales de Acción , Animales , Animales Recién Nacidos , Linaje de la Célula , Proliferación Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción/metabolismo , Transgenes , Virión/metabolismo
3.
Neurosci Lett ; 590: 126-31, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646995

RESUMEN

The lateral amygdala nucleus (La) is known as a gateway for emotional learning that interfaces sensory inputs from the cortex and the thalamus. In the La, inhibitory GABAergic inputs control the strength of sensory inputs and interfere with the initial step of the acquisition of fear memory. In the present study, we investigated the spatial and temporal patterns of the inhibitory responses in mouse La using voltage-sensitive dye imaging. Stimulating the external capsule (EC) induced large and long-lasting hyperpolarizing signals in the La. We focused on these hyperpolarizing signals, revealing the origins of the inhibitory inputs by means of surgical cuts on the possible afferent pathways with four patterns. Isolating the medial branch of EC (ECmed), but not the lateral branch of EC (EClat), from the La strongly suppressed the induction of the hyperpolarization. Interestingly, isolating the ECmed from the caudate putamen did not suppress the hyperpolarization, while the surgical cut of the ECmed fiber tract moderately suppressed it. Glutamatergic antagonists completely suppressed the hyperpolarizing signals induced by the stimulation of EC. When directly stimulating the dorsal, middle or ventral part of the ECmed fiber tract in the presence of glutamatergic antagonists, only the stimulation in the middle part of the ECmed caused hyperpolarization. These data indicate that the GABAergic neurons in the medial intercalated cluster (m-ITC), which receive glutamatergic excitatory input from the ECmed fiber tract, send inhibitory afferents to the La. This pathway might have inhibitory effects on the acquisition of fear memory.


Asunto(s)
Vías Aferentes/fisiología , Complejo Nuclear Basolateral/fisiología , Inhibición Neural , 2-Amino-5-fosfonovalerato , 6-Ciano 7-nitroquinoxalina 2,3-diona , Vías Aferentes/efectos de los fármacos , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Colorantes Fluorescentes , Masculino , Ratones Endogámicos C57BL , Imagen Óptica , Compuestos de Piridinio , Imagen de Colorante Sensible al Voltaje
4.
Cogn Neurodyn ; 7(1): 67-77, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24427192

RESUMEN

The present study used an optical imaging paradigm to investigate plastic changes in the auditory cortex induced by fear conditioning, in which a sound (conditioned stimulus, CS) was paired with an electric foot-shock (unconditioned stimulus, US). We report that, after conditioning, auditory information could be retrieved on the basis of an electric foot-shock alone. Before conditioning, the auditory cortex showed no response to a foot-shock presented in the absence of sound. In contrast, after conditioning, the mere presentation of a foot-shock without any sound succeeded in eliciting activity in the auditory cortex. Additionally, the magnitude of the optical response in the auditory cortex correlated with variation in the electrocardiogram (correlation coefficient: -0.68). The area activated in the auditory cortex, in response to the electric foot-shock, statistically significantly had a larger cross-correlation value for tone response to the CS sound (12 kHz) compared to the non-CS sounds in normal conditioning group. These results suggest that integration of different sensory modalities in the auditory cortex was established by fear conditioning.

5.
Cogn Neurodyn ; 6(1): 1-10, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23372615

RESUMEN

The plastic changes in the auditory cortex induced by a fear conditioning, through pairing a sound (CS) with an electric foot-shock (US), were investigated using an optical recording method with voltage sensitive dye, RH795. In order to investigate the effects of association learning, optical signals in the auditory cortex in response to CS (12 kHz pure tone) and non-CS (4, 8, 16 kHz pure tone) were recorded before and after normal and sham conditioning. As a result, the response area to CS enlarged only in the conditioning group after the conditioning. Additionally, the rise time constant of the auditory response to CS significantly decreased and the relative peak value and the decay time constant of the auditory response to CS significantly increased after the conditioning. This study introduces an optical approach to the investigation of fear conditioning, representational plasticity, and the cholinergic system. The findings are synthesized in a model of the synaptic mechanisms that underlie cortical plasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA