RESUMEN
The Scythians were a multitude of horse-warrior nomad cultures dwelling in the Eurasian steppe during the first millennium BCE. Because of the lack of first-hand written records, little is known about the origins and relations among the different cultures. To address these questions, we produced genome-wide data for 111 ancient individuals retrieved from 39 archaeological sites from the first millennia BCE and CE across the Central Asian Steppe. We uncovered major admixture events in the Late Bronze Age forming the genetic substratum for two main Iron Age gene-pools emerging around the Altai and the Urals respectively. Their demise was mirrored by new genetic turnovers, linked to the spread of the eastern nomad empires in the first centuries CE. Compared to the high genetic heterogeneity of the past, the homogenization of the present-day Kazakhs gene pool is notable, likely a result of 400 years of strict exogamous social rules.
RESUMEN
Ethnogenesis of Kazakhs took place in Central Asia, a region of high genetic and cultural diversity. Even though archaeological and historical studies have shed some light on the formation of modern Kazakhs, the process of establishment of hierarchical socioeconomic structure in the Steppe remains contentious. In this study, we analyzed haplotype variation at 15 Y-chromosomal short-tandem-repeats obtained from 1171 individuals from 24 tribes representing the three socio-territorial subdivisions (Senior, Middle and Junior zhuz) in Kazakhstan to comprehensively characterize the patrilineal genetic architecture of the Kazakh Steppe. In total, 577 distinct haplotypes were identified belonging to one of 20 haplogroups; 16 predominant haplogroups were confirmed by SNP-genotyping. The haplogroup distribution was skewed towards C2-M217, present in all tribes at a global frequency of 51.9%. Despite signatures of spatial differences in haplotype frequencies, a Mantel test failed to detect a statistically significant correlation between genetic and geographic distance between individuals. An analysis of molecular variance found that â¼8.9% of the genetic variance among individuals was attributable to differences among zhuzes and â¼20% to differences among tribes within zhuzes. The STRUCTURE analysis of the 1164 individuals indicated the presence of 20 ancestral groups and a complex three-subclade organization of the C2-M217 haplogroup in Kazakhs, a result supported by the multidimensional scaling analysis. Additionally, while the majority of the haplotypes and tribes overlapped, a distinct cluster of the O2 haplogroup, mostly of the Naiman tribe, was observed. Thus, firstly, our analysis indicated that the majority of Kazakh tribes share deep heterogeneous patrilineal ancestries, while a smaller fraction of them are descendants of a founder paternal ancestor. Secondly, we observed a high frequency of the C2-M217 haplogroups along the southern border of Kazakhstan, broadly corresponding to both the path of the Mongolian invasion and the ancient Silk Road. Interestingly, we detected three subclades of the C2-M217 haplogroup that broadly exhibits zhuz-specific clustering. Further study of Kazakh haplotypes variation within a Central Asian context is required to untwist this complex process of ethnogenesis.
RESUMEN
This study presents the first results of a molecular-genetic study of colorectal cancer (CRC) in Kazakhstan. Blood samples were collected from patients diagnosed with rectal or colon cancer (249 individuals) as well as a control cohort of healthy volunteers (245 individuals), taking into account the age, gender, ethnicity, and smoking habits of the CRC patients. Combined analysis of data obtained from individuals of either Kazakh or Russian decent showed a significant association with increased CRC risk in the following genotypes: DCC (32008376G/G and G/A versus A/A; OR = 3.45, 95 % confidence interval (95 %CI) = 1.75-6.81, χ (2) = 14.07, p < 0.0002), MLH1 (-93G/G versus G/A and A/A; OR = 1.45, 95 %CI = 1.02-2.07, χ (2) = 4.21, p < 0.04), TP53 (Pro72Pro; OR = 3.80, 95 %CI = 2.46-5.88, χ (2) = 61.27, p < 0.0001), combination GSTT1 deletions with heterozygotes versus normal homozygotes (OR = 1.43, 95 %CI = 1.00-2.04, χ (2) = 3.90, p < 0.05), and GSTM1 deletions (OR = 1.83, 95 %CI = 1.28-2.63, χ (2) = 11.04, p < .001). Analysis for ethnicity and smoking for each of the investigated polymorphisms showed that some genotypes can have a predictive value for susceptibility to CRC, at least those that demonstrate statistically significant ORs either for the combined mixed population of Kazakhstan or for both main ethnic groups separately (Kazakhs and Russians): TP53 Pro72Pro homozygous (for Kazakh-OR = 3.40, 95 %CI = 1.63-7.06, χ (2) = 11.35, p < 0.003; for Russian-OR = 4.69, 95 %CI = 2.53-8.66, χ (2) = 53.19, p < 0.0001) and GSTM1 deletions (for Kazakh-OR = 2.30, 95 %CI = 1.21-4.40, χ (2) = 8.42, p < 0.01; for Russian-OR = 1.64, 95 %CI = 1.01-2.66, χ (2) = 7.82, p < 0.02).
Asunto(s)
Adenocarcinoma/genética , Neoplasias Colorrectales/genética , Polimorfismo de Nucleótido Simple , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Receptor DCC , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Glutatión Transferasa/genética , Humanos , Kazajstán , Masculino , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL , Proteínas Nucleares/genética , Receptores de Superficie Celular/genética , Factores de Riesgo , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Aging associates with a variety of pathological conditions such as cancer, cardiovascular, neurodegenerative, autoimmune diseases, and metabolic disorders. The oncogenic alterations overlap frequently with the genes linked to aging. Here, we show that several aging related genes may serve as the genetic risk factors for cervical and esophagus cancers. In our study, we analyzed samples obtained from 115 patients with esophageal and 207 patients with cervical cancer. The control groups were selected to match the ethnicity and age of cancer patients. We examined the genes involved in the processes of xenobiotics detoxification (GSTM1 and GSTT1), DNA repair (XRCC1 and XRCC3), and cell cycle regulation and apoptosis (CCND1 and TP53). Our study revealed that deletions of GSTT1 and GSTM1 genes or the distinct point mutations of XRCC1 gene are associated with cervical and esophageal cancers. These results will lead to development of screening for detection of individuals susceptible to esophageal and cervical cancers. Introduction of the screening programs will allow the early and effective preventive measures that will reduce cancer incidence and mortality in Kazakhstan.