Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 21(5): 1331-1346, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29091770

RESUMEN

Mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) integrates signals from growth factors and nutrients to control biosynthetic processes, including protein, lipid, and nucleic acid synthesis. We find that the mTORC1 pathway is responsive to changes in purine nucleotides in a manner analogous to its sensing of amino acids. Depletion of cellular purines, but not pyrimidines, inhibits mTORC1, and restoration of intracellular adenine nucleotides via addition of exogenous purine nucleobases or nucleosides acutely reactivates mTORC1. Adenylate sensing by mTORC1 is dependent on the tuberous sclerosis complex (TSC) protein complex and its regulation of Rheb upstream of mTORC1, but independent of energy stress and AMP-activated protein kinase (AMPK). Even though mTORC1 signaling is not acutely sensitive to changes in intracellular guanylates, long-term depletion of guanylates decreases Rheb protein levels. Our findings suggest that nucleotide sensing, like amino acid sensing, enables mTORC1 to tightly coordinate nutrient availability with the synthesis of macromolecules, such as protein and nucleic acids, produced from those nutrients.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nucleótidos de Purina/metabolismo , Células A549 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Fluorouracilo/farmacología , Células HeLa , Humanos , Mercaptopurina/farmacología , Metotrexato/farmacología , Ratones , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fosforribosilglicinamida-Formiltransferasa/antagonistas & inhibidores , Fosforribosilglicinamida-Formiltransferasa/genética , Fosforribosilglicinamida-Formiltransferasa/metabolismo , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Trends Cancer ; 2(5): 241-251, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27668290

RESUMEN

The movement toward precision medicine with targeted therapeutics for cancer treatment has been hindered by both innate and acquired resistance. Understanding the molecular wiring and plasticity of oncogenic signaling networks is essential to the development of therapeutic strategies to avoid or overcome resistance. The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) represents a highly integrated signaling node that is dysregulated in the majority of human cancers. Several studies have revealed that sustained mTORC1 inhibition is essential to avoid resistance to targeted therapeutics against the driving oncogenic pathway in a given cancer. Here we discuss the role of mTORC1 in dictating the response of tumors to targeted therapeutics and review recent examples from lung cancer, breast cancer, and melanoma.

3.
J Cell Biol ; 208(5): 613-27, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25713416

RESUMEN

High levels of the intermediate filament keratin 17 (K17) correlate with a poor prognosis for several types of epithelial tumors. However, the causal relationship and underlying mechanisms remain undefined. A recent study suggested that K17 promotes skin tumorigenesis by fostering a specific type of inflammation. We report here that K17 interacts with the RNA-binding protein hnRNP K, which has also been implicated in cancer. K17 is required for the cytoplasmic localization of hnRNP K and for its role in regulating the expression of multiple pro-inflammatory mRNAs. Among these are the CXCR3 ligands CXCL9, CXCL10, and CXCL11, which together form a signaling axis with an established role in tumorigenesis. The K17-hnRNP K partnership is regulated by the ser/thr kinase RSK and required for CXCR3-dependent tumor cell growth and invasion. These findings functionally integrate K17, hnRNP K, and gene expression along with RSK and CXCR3 signaling in a keratinocyte-autonomous axis and provide a potential basis for their implication in tumorigenesis.


Asunto(s)
Quimiocinas CXC/biosíntesis , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Queratinocitos/metabolismo , Queratinas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Quimiocinas CXC/genética , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Queratinas/genética , Ratones Noqueados , Proteínas de Neoplasias/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Transducción de Señal/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA