Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Phys ; 7(1): 177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845615

RESUMEN

Optical resonators are indispensable tools in optical metrology that usually benefit from an evacuated and highly-isolated environment to achieve peak performance. Even in the more sophisticated design of Fabry-Perot (FP) cavities, the material choice limits the achievable quality factors. For this reason, monolithic resonators are emerging as promising alternative to traditional designs, but their design is still at preliminary stage and far from being optimized. Here, we demonstrate a monolithic FP resonator with 4.5 cm3 volume and 2 × 105 finesse. In the ambient environment, we achieve 18 Hz integrated laser linewidth and 7 × 10-14 frequency stability measured from 0.08 s to 0.3 s averaging time, the highest spectral purity and stability demonstrated to date in the context of monolithic reference resonators. By locking two separate lasers to distinct modes of the same resonator, a 96 GHz microwave signals is generated with phase noise -100 dBc/Hz at 10 kHz frequency offset, achieving orders of magnitude improvement in the approach of photonic heterodyne synthesis. The compact monolithic FP resonator is promising for applications in spectrally-pure, high-frequency microwave photonic references as well as optical clocks and other metrological devices. ©2024. All rights reserved.

2.
Nature ; 627(8004): 534-539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448599

RESUMEN

Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb1-3. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption. In this work we address this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division4,5. Narrow-linewidth self-injection-locked integrated lasers6,7 are stabilized to a miniature Fabry-Pérot cavity8, and the frequency gap between the lasers is divided with an efficient dark soliton frequency comb9. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of -96 dBc Hz-1 at 100 Hz offset frequency that decreases to -135 dBc Hz-1 at 10 kHz offset-values that are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems.

3.
Opt Lett ; 49(6): 1520-1523, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489440

RESUMEN

We demonstrate an efficient simultaneous self-injection locking of two semiconductor lasers to high-order modes of a standalone monolithic non-confocal Fabry-Perot cavity. The lasers are used to generate a low-noise microwave signal on a fast photodiode. The overall improvement of the laser spectral purity exceeds 80 dB. The observed single-sideband phase noise of X- to W-band signals is at the -110 dBc/Hz level and is limited by the fundamental thermorefractive noise of the cavity. The demonstrated cavity-laser configuration can be tightly packaged and is promising for the generation of high-frequency RF signals as well as for referencing optical frequency combs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA