Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39314352

RESUMEN

Hyperuricemia is a condition when uric acid, a waste product of purine metabolism, accumulates in the blood1. Untreated hyperuricemia can lead to crystal formation of monosodium urate in the joints, causing a painful inflammatory disease known as gout. These conditions are associated with many other diseases and affect a significant and increasing proportion of the population2-4. The human urate transporter 1 (URAT1) is responsible for the reabsorption of ~90% of uric acid in the kidneys back into the blood, making it a primary target for treating hyperuricemia and gout5. Despite decades of research and development, clinically available URAT1 inhibitors have limitations because the molecular basis of URAT1 inhibition by gout drugs remains unknown5. Here we present cryo-electron microscopy structures of URAT1 alone and in complex with three clinically relevant inhibitors: benzbromarone, lesinurad, and the novel compound TD-3. Together with functional experiments and molecular dynamics simulations, we reveal that these inhibitors bind selectively to URAT1 in inward-open states. Furthermore, we discover differences in the inhibitor dependent URAT1 conformations as well as interaction networks, which contribute to drug specificity. Our findings illuminate a general theme for URAT1 inhibition, paving the way for the design of next-generation URAT1 inhibitors in the treatment of gout and hyperuricemia.

2.
J Mol Biol ; 436(17): 168554, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39237201

RESUMEN

Molecular modeling and simulation serve an important role in exploring biological functions of proteins at the molecular level, which is complementary to experiments. CHARMM-GUI (https://www.charmm-gui.org) is a web-based graphical user interface that generates complex molecular simulation systems and input files, and we have been continuously developing and expanding its functionalities to facilitate various complex molecular modeling and make molecular dynamics simulations more accessible to the scientific community. Currently, covalent drug discovery emerges as a popular and important field. Covalent drug forms a chemical bond with specific residues on the target protein, and it has advantages in potency for its prolonged inhibition effects. Even though there are higher demands in modeling PDB protein structures with various covalent ligand types, proper modeling of covalent ligands remains challenging. This work presents a new functionality in CHARMM-GUI PDB Reader & Manipulator that can handle a diversity of ligand-amino acid linkage types, which is validated by a careful benchmark study using over 1,000 covalent ligand structures in RCSB PDB. We hope that this new functionality can boost the modeling and simulation study of covalent ligands.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Programas Informáticos , Ligandos , Proteínas/química , Proteínas/metabolismo , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Interfaz Usuario-Computador , Descubrimiento de Drogas/métodos
3.
Biophys J ; 123(19): 3478-3489, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39228123

RESUMEN

The surface of a cell is crowded with membrane proteins. The size, shape, density, and mobility of extracellular surface proteins mediate cell surface accessibility to external molecules, viral particles, and other cells. However, predicting these qualities is not always straightforward, even when protein structures are known. We previously developed an experimental method for measuring flow-driven lateral transport of neutravidin bound to biotinylated lipids in supported lipid bilayers. Here, we use this method to detect hydrodynamic force applied to a series of lipid-anchored proteins with increasing size. We find that the measured force reflects both protein size and shape, making it possible to distinguish these features of intact, folded proteins in their undisturbed orientation and proximity to the lipid membrane. In addition, our results demonstrate that individual proteins are transported large distances by flow forces on the order of femtoNewtons, similar in magnitude to the shear forces resulting from blood circulation or from the swimming motion of microorganisms. Similar protein transport across living cells by hydrodynamic force may contribute to biological flow sensing.


Asunto(s)
Hidrodinámica , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Avidina/química , Avidina/metabolismo
4.
J Phys Chem B ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303207

RESUMEN

Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.

5.
Sci Adv ; 10(31): eadp2211, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093967

RESUMEN

Our sensory adaptation to cold and chemically induced coolness is mediated by the intrinsic property of TRPM8 channels to desensitize. TRPM8 is also implicated in cold-evoked pain disorders and migraine, highlighting its inhibitors as an avenue for pain relief. Despite the importance, the mechanisms of TRPM8 desensitization and inhibition remained unclear. We found, using cryo-electron microscopy, electrophysiology, and molecular dynamics simulations, that TRPM8 inhibitors bind selectively to the desensitized state of the channel. These inhibitors were used to reveal the overlapping mechanisms of desensitization and inhibition and that cold and cooling agonists share a common desensitization pathway. Furthermore, we identified the structural determinants crucial for the conformational change in TRPM8 desensitization. Our study illustrates how receptor-level conformational changes alter cold sensation, providing insights into therapeutic development.


Asunto(s)
Frío , Mentol , Canales Catiónicos TRPM , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Humanos , Mentol/farmacología , Simulación de Dinámica Molecular , Adaptación Fisiológica , Microscopía por Crioelectrón , Células HEK293 , Conformación Proteica , Animales
6.
J Control Release ; 373: 105-116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992622

RESUMEN

Nanomedicines hold promise for the treatment of various diseases. However, treating cancer metastasis remains highly challenging. In this study, we synthesized gold nanorods (AuNRs) containing (α-GC), an immune stimulator, for the treatment of primary cancer, metastasis, and recurrence of the cancer. Therefore, the AuNR were coated with lipid bilayers loaded with α-GC (α-LA). Upon irradiation with 808 nm light, α-LA showed a temperature increase. Intra-tumoral injection of α-LA in mice and local irradiation of the 4T1 breast cancer tumor effectively eliminated tumor growth. We found that the presence of α-GC in α-LA activated dendritic cells and T cells in the spleen, which completely blocked the development of lung metastasis. In mice injected with α-LA for primary breast cancer treatment, we observed antigen-specific T cell responses and increased cytotoxicity against 4T1 cells. We conclude that α-LA is promising for the treatment of both primary breast cancer and its metastasis.


Asunto(s)
Neoplasias de la Mama , Oro , Inmunoterapia , Neoplasias Pulmonares , Ratones Endogámicos BALB C , Nanotubos , Fototerapia , Animales , Oro/química , Oro/administración & dosificación , Nanotubos/química , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Inmunoterapia/métodos , Fototerapia/métodos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos
7.
Methods Enzymol ; 701: 123-156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025570

RESUMEN

Membrane proteins (MPs) often show preference for one phase over the other, which is characterized by the partition coefficient, Kp. The physical mechanisms underlying Kp have been only inferred indirectly from experiments due to the unavailability of detailed structures and compositions of ordered phases. Molecular dynamics (MD) simulations can complement these details and thus, in principle, provide further insights into the partitioning of MPs between two phases. However, the application of MD has remained difficult due to long time scales required for equilibration and large system size for the phase stability, which have not been fully resolved even in free energy simulations. This chapter describes the recently developed binary bilayer simulation method, where the membrane is composed of two laterally attached membrane patches. The binary bilayer system (BBS) is designed to preserve the lateral packing of both phases in a significantly smaller size compared to that required for macroscopic phase separation. These characteristics are advantageous in partitioning simulations, as the length scale for diffusion across the system can be significantly smaller. Hence the BBS can be efficiently employed in both conventional MD and free energy simulations, though sampling in ordered phases remains difficult due to slow diffusion. Development of efficient lipid swapping methods and its combination with the BBS would be a useful approach for partitioning in coexisting phases.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Difusión , Termodinámica
8.
J Chem Inf Model ; 64(14): 5671-5679, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38959405

RESUMEN

Alchemical relative binding free energy (ΔΔG) calculations have shown high accuracy in predicting ligand binding affinity and have been used as important tools in computer-aided drug discovery and design. However, there has been limited research on the application of ΔΔG methods to membrane proteins despite the fact that these proteins represent a significant proportion of drug targets, play crucial roles in biological processes, and are implicated in numerous diseases. In this study, to predict the binding affinity of ligands to G protein-coupled receptors (GPCRs), we employed two ΔΔG calculation methods: thermodynamic integration (TI) with AMBER and the alchemical transfer method (AToM) with OpenMM. We calculated ΔΔG values for 53 transformations involving four class A GPCRs and evaluated the performance of AMBER-TI and AToM-OpenMM. In addition, we conducted tests using different numbers of windows and varying simulation times to achieve reliable ΔΔG results and to optimize resource utilization. Overall, both AMBER-TI and AToM-OpenMM show good agreement with the experimental data. Our results validate the applicability of AMBER-TI and AToM-OpenMM for optimization of lead compounds targeting membrane proteins.


Asunto(s)
Proteínas de la Membrana , Unión Proteica , Termodinámica , Ligandos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular
9.
J Chem Theory Comput ; 20(12): 5337-5351, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38856971

RESUMEN

Quantum mechanical (QM) treatments, when combined with molecular mechanical (MM) force fields, can effectively handle enzyme-catalyzed reactions without significantly increasing the computational cost. In this context, we present CHARMM-GUI QM/MM Interfacer, a web-based cyberinfrastructure designed to streamline the preparation of various QM/MM simulation inputs with ligand modification. The development of QM/MM Interfacer has been achieved through integration with existing CHARMM-GUI modules, such as PDB Reader and Manipulator, Solution Builder, and Membrane Builder. In addition, new functionalities have been developed to facilitate the one-stop preparation of QM/MM systems and enable interactive and intuitive ligand modifications and QM atom selections. QM/MM Interfacer offers support for a range of semiempirical QM methods, including AM1(+/d), PM3(+/PDDG), MNDO(+/d, +/PDDG), PM6, RM1, and SCC-DFTB, tailored for both AMBER and CHARMM. A nontrivial setup related to ligand modification, link-atom insertion, and charge distribution is automatized through intuitive user interfaces. To illustrate the robustness of QM/MM Interfacer, we conducted QM/MM simulations of three enzyme-substrate systems: dihydrofolate reductase, insulin receptor kinase, and oligosaccharyltransferase. In addition, we have created three tutorial videos about building these systems, which can be found at https://www.charmm-gui.org/demo/qmi. QM/MM Interfacer is expected to be a valuable and accessible web-based tool that simplifies and accelerates the setup process for hybrid QM/MM simulations.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Programas Informáticos , Ligandos
10.
Nat Commun ; 15(1): 5459, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937468

RESUMEN

Atomic-scale molecular modeling and simulation are powerful tools for computational biology. However, constructing models with large, densely packed molecules, non-water solvents, or with combinations of multiple biomembranes, polymers, and nanomaterials remains challenging and requires significant time and expertise. Furthermore, existing tools do not support such assemblies under the periodic boundary conditions (PBC) necessary for molecular simulation. Here, we describe Multicomponent Assembler in CHARMM-GUI that automates complex molecular assembly and simulation input preparation under the PBC. In this work, we demonstrate its versatility by preparing 6 challenging systems with varying density of large components: (1) solvated proteins, (2) solvated proteins with a pre-equilibrated membrane, (3) solvated proteins with a sheet-like nanomaterial, (4) solvated proteins with a sheet-like polymer, (5) a mixed membrane-nanomaterial system, and (6) a sheet-like polymer with gaseous solvent. Multicomponent Assembler is expected to be a unique cyberinfrastructure to study complex interactions between small molecules, biomacromolecules, polymers, and nanomaterials.


Asunto(s)
Nanoestructuras , Polímeros , Nanoestructuras/química , Polímeros/química , Simulación de Dinámica Molecular , Proteínas/química , Modelos Moleculares , Solventes/química , Biología Computacional/métodos , Programas Informáticos
11.
Br J Pharmacol ; 181(17): 3172-3191, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38720171

RESUMEN

BACKGROUND AND PURPOSE: Oligomeric amyloid ß 1-42 (oAß1-42) exhibits agonist-like action at human α7- and α7ß2-containing nicotinic receptors. The N-terminal amyloid ß1-15 fragment (N-Aß fragment) modulates presynaptic calcium and enhances hippocampal-based synaptic plasticity via α7-containing nicotinic receptors. Further, the N-Aß fragment and its core sequence, the N-amyloid-beta core hexapeptide (N-Aßcore), protect against oAß1-42-associated synapto- and neurotoxicity. Here, we investigated how oAß1-42, the N-Aß fragment, and the N-Aßcore regulate the single-channel properties of α7- and α7ß2-nicotinic receptors. EXPERIMENTAL APPROACH: Single-channel recordings measured the impact of acetylcholine, oAß1-42, the N-Aß fragment, and the N-Aßcore on the unitary properties of human α7- and α7ß2-containing nicotinic receptors expressed in nicotinic-null SH-EP1 cells. Molecular dynamics simulations identified potential sites of interaction between the N-Aß fragment and orthosteric α7+/α7- and α7+/ß2- nicotinic receptor binding interfaces. KEY RESULTS: The N-Aß fragment and N-Aßcore induced α7- and α7ß2-nicotinic receptor single-channel openings. Relative to acetylcholine, oAß1-42 preferentially enhanced α7ß2-nicotinic receptor single-channel open probability and open-dwell times. Co-application with the N-Aßcore neutralized these effects. Further, administration of the N-Aß fragment alone, or in combination with acetylcholine or oAß1-42, selectively enhanced α7-nicotinic receptor open probability and open-dwell times (compared to acetylcholine or oAß1-42). CONCLUSIONS AND IMPLICATIONS: Amyloid-beta peptides demonstrate functional diversity in regulating α7- and α7ß2-nicotinic receptor function, with implications for a wide range of nicotinic receptor-mediated functions in Alzheimer's disease. The effects of these peptides on α7- and/or α7ß2-nicotinic receptors revealed complex interactions with these subtypes, providing novel insights into the neuroprotective actions of amyloid ß-derived fragments against the toxic effects of oAß1-42.


Asunto(s)
Péptidos beta-Amiloides , Fragmentos de Péptidos , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Péptidos beta-Amiloides/toxicidad , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Fragmentos de Péptidos/farmacología , Fármacos Neuroprotectores/farmacología , Simulación de Dinámica Molecular , Acetilcolina/farmacología , Receptores Nicotínicos/metabolismo
12.
Chempluschem ; 89(8): e202400013, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600039

RESUMEN

Lipid droplets (LDs) are organelles that are necessary for eukaryotic and prokaryotic metabolism and energy storage. They have a unique structure consisting of a spherical phospholipid monolayer encasing neutral lipids such as triacylglycerol (TAG). LDs have garnered increased interest for their implications in disease and for drug delivery applications. Consequently, there is an increased need for tools to study their structure, composition, and dynamics in biological contexts. In this work, we utilize CHARMM-GUI Membrane Builder to simulate and analyze LDs with and without a plant LD protein, oleosin. The results show that Membrane Builder can generate biologically relevant all-atom LD systems with relatively short equilibration times using a new TAG library having optimized headgroup parameters. TAG molecules originally inserted into a lipid bilayer aggregate in the membrane center, forming a TAG-only core flanked by two monolayers. The TAG-only core thickness stably grows with increasing TAG mole fraction. A 70 % TAG system has a core that is thick enough to house oleosin without its interactions with the distal leaflet or disruption of its secondary structure. We hope that Membrane Builder can aid in the future study of LD systems, including their structure and dynamics with and without proteins.


Asunto(s)
Gotas Lipídicas , Gotas Lipídicas/química , Triglicéridos/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular
13.
Curr Opin Struct Biol ; 86: 102813, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38598982

RESUMEN

Oxidative stress leads to the production of oxidized phospholipids (oxPLs) that modulate the biophysical properties of phospholipid monolayers and bilayers. As many immune cells are responsible for surveilling cells and tissues for the presence of oxPLs, oxPL-dependent mechanisms have been suggested as targets for treating chronic kidney disease, atherosclerosis, diabetes, and cancer metastasis. This review details recent experimental and computational studies that characterize oxPLs' behaviors in various monolayers and bilayers. These studies investigate how the tail length and polar functional groups of OxPLs impact membrane properties, how oxidized membranes can be stabilized, and how membrane integrity is generally affected by oxidized lipids. In addition, for oxPL-containing membrane modeling and simulation, CHARMM-GUI Membrane Builder has been extended to support a variety of oxPLs, accelerating the simulation system building process for these biologically relevant lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos , Oxidación-Reducción , Fosfolípidos , Fosfolípidos/metabolismo , Fosfolípidos/química , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Simulación de Dinámica Molecular , Modelos Moleculares
14.
J Phys Chem B ; 128(13): 3282-3297, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506668

RESUMEN

New functionality is added to the LAMMPS molecular simulation package, which increases the versatility with which LAMMPS can interface with supporting software and manipulate information associated with bonded force fields. We introduce the "type label" framework that allows atom types and their higher-order interactions (bonds, angles, dihedrals, and impropers) to be represented in terms of the standard atom type strings of a bonded force field. Type labels increase the human readability of input files, enable bonded force fields to be supported by the OpenKIM repository, simplify the creation of reaction templates for the REACTER protocol, and increase compatibility with external visualization tools, such as VMD and OVITO. An introductory primer on the forms and use of bonded force fields is provided to motivate this new functionality and serve as an entry point for LAMMPS and OpenKIM users unfamiliar with bonded force fields. The type label framework has the potential to streamline modeling workflows that use LAMMPS by increasing the portability of software, files, and scripts for preprocessing, running, and postprocessing a molecular simulation.

15.
Methods Mol Biol ; 2778: 311-330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478286

RESUMEN

Spurred by advances in AI-driven modeling and experimental methods, molecular dynamics simulations are now acting as a platform to integrate these different approaches. This combination of methods is especially useful to understand ß-barrel proteins from the molecular level, e.g., identifying specific interactions with lipids or small molecules, up to assemblies comprised of hundreds of proteins and thousands of lipids. In this minireview, we will discuss recent advances, mainly from the last 5 years, in modeling ß-barrel proteins and their assemblies. These approaches require specific kinds of modeling and potentially different model resolutions that we will first describe in Subheading 1. We will then focus on different aspects of ß-barrel protein modeling: how different types of molecules can diffuse through ß-barrel proteins (Subheading 2); how lipids can interact with these proteins (Subheading 3); how ß-barrel proteins can interact with membrane partners (Subheading 4) or periplasmic extensions and partners (Subheading 5) to form large assemblies.


Asunto(s)
Proteínas de la Membrana , Simulación de Dinámica Molecular , Periplasma/metabolismo , Lípidos , Proteínas de la Membrana Bacteriana Externa/metabolismo
16.
Nat Chem Biol ; 20(9): 1144-1153, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38418906

RESUMEN

Nucleoside analogs have broad clinical utility as antiviral drugs. Key to their systemic distribution and cellular entry are human nucleoside transporters. Here, we establish that the human concentrative nucleoside transporter 3 (CNT3) interacts with antiviral drugs used in the treatment of coronavirus infections. We report high-resolution single-particle cryo-electron microscopy structures of bovine CNT3 complexed with antiviral nucleosides N4-hydroxycytidine, PSI-6206, GS-441524 and ribavirin, all in inward-facing states. Notably, we found that the orally bioavailable antiviral molnupiravir arrests CNT3 in four distinct conformations, allowing us to capture cryo-electron microscopy structures of drug-loaded outward-facing and drug-loaded intermediate states. Our studies uncover the conformational trajectory of CNT3 during membrane transport of a nucleoside analog antiviral drug, yield new insights into the role of interactions between the transport and the scaffold domains in elevator-like domain movements during drug translocation, and provide insights into the design of nucleoside analog antiviral prodrugs with improved oral bioavailability.


Asunto(s)
Antivirales , Microscopía por Crioelectrón , Proteínas de Transporte de Membrana , Antivirales/química , Antivirales/farmacología , Antivirales/metabolismo , Humanos , Animales , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Bovinos , Transporte Biológico
17.
FASEB J ; 38(1): e23374, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161283

RESUMEN

This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and ß2 subunits (α7ß2-nAChR subtype). Basal forebrain cholinergic neurons express α7ß2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-ß associated with early Alzheimer's disease. Additional work indicates that α7ß2-nAChR are expressed across several further critically important cholinergic and GABAergic neuronal circuits within the central nervous system. Further studies, however, are significantly hindered by the inability of currently available ligands to distinguish heteromeric α7ß2-nAChR from the closely related and more widespread homomeric α7-only-nAChR subtype. Functional screening using two-electrode voltage-clamp electrophysiology identified a family of α7ß2-nAChR-selective analogs of α-conotoxin PnIC (α-CtxPnIC). A combined electrophysiology, functional kinetics, site-directed mutagenesis, and molecular dynamics approach was used to further characterize the α7ß2-nAChR selectivity and site of action of these α-CtxPnIC analogs. We determined that α7ß2-nAChR selectivity of α-CtxPnIC analogs arises from interactions at a site distinct from the orthosteric agonist-binding site shared between α7ß2- and α7-only-nAChR. As numerous previously identified α-Ctx ligands are competitive antagonists of orthosteric agonist-binding sites, this study profoundly expands the scope of use of α-Ctx ligands (which have already provided important nAChR research and translational breakthroughs). More immediately, analogs of α-CtxPnIC promise to enable, for the first time, both comprehensive mapping of the distribution of α7ß2-nAChR and detailed investigations of their physiological roles.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Colinérgicos , Sitios de Unión , Neuronas GABAérgicas/metabolismo , Antagonistas Nicotínicos/farmacología
18.
J Struct Biol ; 216(1): 108061, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185342

RESUMEN

The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.


Asunto(s)
Durapatita , Vitronectina , Humanos , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos
19.
J Comput Chem ; 45(9): 512-522, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37991280

RESUMEN

Peptides and proteins play crucial roles in membrane remodeling by inducing spontaneous curvature. However, extracting spontaneous curvatures from simulations of asymmetric bilayers is challenging because differential stress (i.e., the difference of the leaflet surface tensions) arising from leaflet area strains can vary substantially among initial conditions. This study investigates peptide-induced spontaneous curvature δc 0 p in asymmetric bilayers consisting of a single lipid type and a peptide confined to one leaflet; δc 0 p is calculated from the Helfrich equation using the first moment of the lateral pressure tensor and an alternative expression using the differential stress. It is shown that differential stress introduced during initial system generation is effectively relaxed by equilibrating using P21 periodic boundary conditions, which allows lipids to switch leaflets across cell boundaries and equalize their chemical potentials across leaflets. This procedure leads to robust estimates of δc 0 p for the systems simulated, and is recommended when equality of chemical potentials between the leaflets is a primary consideration.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Péptidos
20.
Structure ; 32(2): 242-252.e2, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103546

RESUMEN

Cytokinesis of animal and fungi cells depends crucially on the anillin scaffold proteins. Fission yeast anillin-related Mid1 anchors cytokinetic ring precursor nodes to the membrane. However, it is unclear if both of its Pleckstrin Homology (PH) and C2 C-terminal domains bind to the membrane as monomers or dimers, and if one domain plays a dominant role. We studied Mid1 membrane binding with all-atom molecular dynamics near a membrane with yeast-like lipid composition. In simulations with the full C terminal region started away from the membrane, Mid1 binds through the disordered L3 loop of C2 in a vertical orientation, with the PH away from the membrane. However, a configuration with both C2 and PH initially bound to the membrane remains associated with the membrane. Simulations of C2-PH dimers show extensive asymmetric membrane contacts. These multiple modes of binding may reflect Mid1's multiple interactions with membranes, node proteins, and ability to sustain mechanical forces.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Contráctiles/metabolismo , Schizosaccharomyces/metabolismo , Citocinesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA