Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Med ; 12(2): 1079-1089, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775283

RESUMEN

BACKGROUND: Acquired erythrocytosis can be classified into polycythemia vera (PV) and non-neoplastic erythrocytosis (NNE). The vast majority of PV patients harbor JAK2 mutations, but differentiating JAK2 mutation-negative PV from NNE is challenging due to a lack of definitive molecular markers. METHODS: We studied the clinical features of 121 patients with erythrocytosis of which 47 (38.8%) were JAK2 mutation-positive and also fulfilled the diagnostic criteria for PV, and 67 (55.4%) JAK2 mutation-negative erythrocytosis patients who were diagnosed as NNE. Diagnosis was strictly based on driver mutation analysis and central pathology review. RESULTS: No JAK2 mutation-negative PV patients were found in our cohort. The NNE group showed significantly younger (p < 0.01) age with higher frequency of smoking (p < 0.001), alcohol consumption (p < 0.001), and diabetes mellitus (p < 0.05), whereas the PV group (n = 47) showed significantly higher white blood cell count, platelet count, and lactate dehydrogenase (p < 0.001). Although serum erythropoietin (EPO) levels were significantly higher in NNE compared to PV (p < 0.001), approximately 40% of the NNE patients had EPO levels below the lower range of normal, fulfilling a minor diagnostic criterion of PV and raising the possibility of PV misdiagnosis. CONCLUSION: Low EPO levels in JAK2 mutation-negative erythrocytosis may not be a reliable diagnostic criterion for distinguishing PV from NNE.


Asunto(s)
Eritropoyetina , Policitemia Vera , Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Mutación , Biomarcadores
2.
Exp Hematol ; 118: 12-20, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36511286

RESUMEN

Identification and functional characterization of disease-associated genetic traits are crucial for understanding the pathogenesis of hematologic malignancies. Various in vitro and in vivo models, including cell lines, primary cells, and animal models, have been established to examine these genetic alterations. However, their nonphysiologic conditions, diverse genetic backgrounds, and species-specific differences often limit data interpretation. To evaluate somatic mutations in myeloproliferative neoplasms (MPNs), we used CRISPR/Cas9 combined with the piggyBac transposon system to establish isogenic induced pluripotent stem (iPS) cell lines with or without JAK2V617F mutation, a driver mutation of MPNs. We induced hematopoietic stem/progenitor cells (HSPCs) from these iPS cells and observed phenotypic differences during hematopoiesis using fluorescence-activated cell sorting analysis. HSPCs with pathogenic mutations exhibited cell-autonomous erythropoiesis and megakaryopoiesis, which are hallmarks in the bone marrow of patients with MPNs. Furthermore, we used these HSPCs as a model to validate therapeutic compounds and showed that interferon alpha selectively inhibited erythropoiesis and megakaryopoiesis in mutant HSPCs. These results demonstrate that genome editing is feasible for establishing isogenic iPS cells, studying genetic elements to understand the pathogenesis of MPNs, and evaluating therapeutic compounds against MPNs.


Asunto(s)
Neoplasias Hematológicas , Células Madre Pluripotentes Inducidas , Trastornos Mieloproliferativos , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Trastornos Mieloproliferativos/patología , Mutación , Eritropoyesis , Neoplasias Hematológicas/metabolismo , Janus Quinasa 2/genética
3.
Nat Commun ; 13(1): 7262, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36433967

RESUMEN

N-glycan-mediated activation of the thrombopoietin receptor (MPL) under pathological conditions has been implicated in myeloproliferative neoplasms induced by mutant calreticulin, which forms an endogenous receptor-agonist complex that traffics to the cell surface and constitutively activates the receptor. However, the molecular basis for this mechanism is elusive because oncogenic activation occurs only in the cell-intrinsic complex and is thus cannot be replicated with external agonists. Here, we describe the structure and function of a marine sponge-derived MPL agonist, thrombocorticin (ThC), a homodimerized lectin with calcium-dependent fucose-binding properties. In-depth characterization of lectin-induced activation showed that, similar to oncogenic activation, sugar chain-mediated activation persists due to limited receptor internalization. The strong synergy between ThC and thrombopoietin suggests that ThC catalyzes the formation of receptor dimers on the cell surface. Overall, the existence of sugar-mediated MPL activation, in which the mode of activation is different from the original ligand, suggests that receptor activation is unpredictably diverse in living organisms.


Asunto(s)
Poríferos , Receptores de Trombopoyetina , Animales , Lectinas , Poríferos/metabolismo , Receptores de Trombopoyetina/metabolismo , Azúcares , Trombopoyetina
4.
Leuk Res ; 119: 106883, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35689957

RESUMEN

Cyclic AMP-response element-binding protein 3-like 1 (CREB3L1) is a gene involved in the unfolded protein response (UPR). Recently, we demonstrated that CREB3L1 is specifically overexpressed in the platelets of patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). In this study, we aimed to show the clinical and biological relevance of CREB3L1 in these hematological diseases. Overexpression of CREB3L1 was specific to platelets in MPNs and associated with a higher risk of thrombosis and fibrotic transformation in essential thrombocythemia (ET) and polycythemia vera (PV) cases, respectively. Furthermore, we found that UPR genes were downregulated in platelets of patients with ET and PV, which were more pronounced in patients harboring the JAK2 V617F mutation. However, CREB3L1 overexpression does not alter UPR gene expression or cell proliferation in UT-7/TPO/CALRm cells exogenously expressing mutated calreticulin and HEL cells harboring endogenous JAK2 V617F. Furthermore, CREB3L1 overexpression did not modulate sensitivity to endoplasmic reticulum stress in these cell lines. Taken together, our data show 1) a potential role of CREB3L1 expression in platelets as a new marker of high-risk MPNs and 2) an association between CREB3L1 overexpression and UPR gene downregulation in these patients' platelets, with CREB3L1 not altering UPR in our in vitro models and possibly further in vivo mechanisms being involved.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Trombocitemia Esencial , Calreticulina/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Humanos , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/genética , Proteínas del Tejido Nervioso/genética , Cromosoma Filadelfia , Policitemia Vera/genética , Trombocitemia Esencial/genética
5.
Fujita Med J ; 8(2): 59-64, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35520290

RESUMEN

Objectives: Zinc (Zn) is a cofactor for more than 200 enzymes within the human body. Zn deficiency can result in cell-mediated immune dysfunction. Furthermore, serum Zn levels have been reported to be associated with nutritional status, but this association has not been clarified in malignant lymphoma. This study aimed to examine the deficiency of serum Zn levels and clarify the factors that are correlated with serum Zn in malignant lymphoma. Methods: Initial malignant lymphoma was diagnosed in patients at Fujita Health University Hospital between April 2011 and March 2019. Based on the serum Zn levels, the study population was divided into "deficient" and "low or normal". For the serum Zn levels of patients undergoing pre-chemotherapy, laboratory parameters and nutritional factors were included. We compared these factors between the abovementioned two groups, and the serum Zn levels with its correlation factors were investigated. Results: A total of 77 patients (Deficient group, n=20 and Low or Normal group, n=57) were enrolled. Histology, hemoglobin, serum albumin levels, Glasgow Prognostic Score (GPS), neutrophile-lymphocyte ratio (NLR), prognostic nutrition index (PNI) and Controlling Nutritional Status (CONUT) were significantly different between the two groups. Of these parameters, only serum albumin level was significantly associated with serum Zn level (p=0.0024; estimated regression coefficient, 9.51; adjusted coefficient of determination, 0.28). Conclusions: Poor nutritional status at the initial diagnosis may have affected Zn deficiency in initial malignant lymphoma.

6.
Nat Commun ; 13(1): 271, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022428

RESUMEN

Leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) are quiescent, insensitive to BCR-ABL1 tyrosine kinase inhibitors (TKIs) and responsible for CML relapse. Therefore, eradicating quiescent CML LSCs is a major goal in CML therapy. Here, using a G0 marker (G0M), we narrow down CML LSCs as G0M- and CD27- double positive cells among the conventional CML LSCs. Whole transcriptome analysis reveals NF-κB activation via inflammatory signals in imatinib-insensitive quiescent CML LSCs. Blocking NF-κB signals by inhibitors of interleukin-1 receptor-associated kinase 1/4 (IRAK1/4 inhibitors) together with imatinib eliminates mouse and human CML LSCs. Intriguingly, IRAK1/4 inhibitors attenuate PD-L1 expression on CML LSCs, and blocking PD-L1 together with imatinib also effectively eliminates CML LSCs in the presence of T cell immunity. Thus, IRAK1/4 inhibitors can eliminate CML LSCs through inhibiting NF-κB activity and reducing PD-L1 expression. Collectively, the combination of TKIs and IRAK1/4 inhibitors is an attractive strategy to achieve a radical cure of CML.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mieloide/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos/farmacología , Enfermedad Crónica , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología
8.
Elife ; 102021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34930522

RESUMEN

Characterization and isolation of a large population of cells are indispensable procedures in biological sciences. Flow cytometry is one of the standards that offers a method to characterize and isolate cells at high throughput. When performing flow cytometry, cells are molecularly stained with fluorescent labels to adopt biomolecular specificity which is essential for characterizing cells. However, molecular staining is costly and its chemical toxicity can cause side effects to the cells which becomes a critical issue when the cells are used downstream as medical products or for further analysis. Here, we introduce a high-throughput stain-free flow cytometry called in silico-labeled ghost cytometry which characterizes and sorts cells using machine-predicted labels. Instead of detecting molecular stains, we use machine learning to derive the molecular labels from compressive data obtained with diffractive and scattering imaging methods. By directly using the compressive 'imaging' data, our system can accurately assign the designated label to each cell in real time and perform sorting based on this judgment. With this method, we were able to distinguish different cell states, cell types derived from human induced pluripotent stem (iPS) cells, and subtypes of peripheral white blood cells using only stain-free modalities. Our method will find applications in cell manufacturing for regenerative medicine as well as in cell-based medical diagnostic assays in which fluorescence labeling of the cells is undesirable.


Asunto(s)
Citometría de Flujo/instrumentación , Células Madre Pluripotentes Inducidas/citología , Leucocitos/citología , Coloración y Etiquetado/instrumentación , Colorantes/análisis , Simulación por Computador , Humanos , Aprendizaje Automático
9.
Sci Rep ; 11(1): 17702, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489506

RESUMEN

A subset of essential thrombocythemia (ET) cases are negative for disease-defining mutations on JAK2, MPL, and CALR and defined as triple negative (TN). The lack of recurrent mutations in TN-ET patients makes its pathogenesis ambiguous. Here, we screened 483 patients with suspected ET in a single institution, centrally reviewed bone marrow specimens, and identified 23 TN-ET patients. Analysis of clinical records revealed that TN-ET patients were mostly young female, without a history of thrombosis or progression to secondary myelofibrosis and leukemia. Sequencing analysis and human androgen receptor assays revealed that the majority of TN-ET patients exhibited polyclonal hematopoiesis, suggesting a possibility of reactive thrombocytosis in TN-ET. However, the serum levels of thrombopoietin (TPO) and interleukin-6 in TN-ET patients were not significantly different from those in ET patients with canonical mutations and healthy individuals. Rather, CD34-positive cells from TN-ET patients showed a capacity to form megakaryocytic colonies, even in the absence of TPO. No signs of thrombocytosis were observed before TN-ET development, denying the possibility of hereditary thrombocytosis in TN-ET. Overall, these findings indicate that TN-ET is a distinctive disease entity associated with polyclonal hematopoiesis and is paradoxically caused by hematopoietic stem cells harboring a capacity for cell-autonomous megakaryopoiesis.


Asunto(s)
Hematopoyesis Clonal/genética , Megacariocitos , Mutación , Trombocitemia Esencial/genética , Adulto , Factores de Edad , Anciano , Citocinas/sangre , Femenino , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Factores Sexuales , Trombocitemia Esencial/sangre , Trombopoyetina/sangre
10.
Int J Hematol ; 114(4): 424-440, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34165774

RESUMEN

Ruxolitinib (RUX), a JAK1/2-inhibitor, is effective for myeloproliferative neoplasm (MPN) with both JAK2V617 F and calreticulin (CALR) mutations. However, many MPN patients develop resistance to RUX. Although mechanisms of RUX-resistance in cells with JAK2V617 F have already been characterized, those in cells with CALR mutations remain to be elucidated. In this study, we established RUX-resistant human cell lines with CALR mutations and characterized mechanisms of RUX-resistance. Here, we found that RUX-resistant cells had high levels of MPL transcripts, overexpression of both MPL and JAK2, and increased phosphorylation of JAK2 and STAT5. We also found that mature MPL proteins were more stable in RUX-resistant cells. Knockdown of MPL in RUX-resistant cells by shRNAs decreased JAK/STAT signaling. Immunoprecipitation assays showed that binding of mutant CALR to MPL was increased in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells. When resistant cells were cultured in the absence of RUX, the RUX-resistance was reversed, with reduction of the mutant-CALR/MPL complex. In conclusion, MPL overexpression induces higher levels of a mutant-CALR/MPL complex, which may cause RUX-resistance in cells with CALR mutations. This mechanism may be a new therapeutic target to overcome RUX-resistance.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo , Animales , Calreticulina , Línea Celular Tumoral , Análisis Mutacional de ADN , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos , Humanos , Inmunohistoquímica , Janus Quinasa 2/genética , Megacariocitos/metabolismo , Ratones , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/tratamiento farmacológico , Nitrilos , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo , Unión Proteica , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas
11.
Cancer Sci ; 112(2): 884-892, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33280191

RESUMEN

Discrimination of Philadelphia-negative myeloproliferative neoplasms (Ph-MPNs) from reactive hypercytosis and myelofibrosis requires a constellation of testing including driver mutation analysis and bone marrow biopsies. We searched for a biomarker that can more easily distinguish Ph-MPNs from reactive hypercytosis and myelofibrosis by using RNA-seq analysis utilizing platelet-rich plasma (PRP)-derived RNAs from patients with essential thrombocythemia (ET) and reactive thrombocytosis, and CREB3L1 was found to have an extremely high impact in discriminating the two disorders. To validate and further explore the result, expression levels of CREB3L1 in PRP were quantified by reverse-transcription quantitative PCR and compared among patients with ET, other Ph-MPNs, chronic myeloid leukemia (CML), and reactive hypercytosis and myelofibrosis. A CREB3L1 expression cutoff value determined based on PRP of 18 healthy volunteers accurately discriminated 150 driver mutation-positive Ph-MPNs from other entities (71 reactive hypercytosis and myelofibrosis, 6 CML, and 18 healthy volunteers) and showed both sensitivity and specificity of 1.0000. Importantly, CREB3L1 expression levels were significantly higher in ET compared with reactive thrombocytosis (P < .0001), and polycythemia vera compared with reactive erythrocytosis (P < .0001). Pathology-affirmed triple-negative ET (TN-ET) patients were divided into a high- and low-CREB3L1-expression group, and some patients in the low-expression group achieved a spontaneous remission during the clinical course. In conclusion, CREB3L1 analysis has the potential to single-handedly discriminate driver mutation-positive Ph-MPNs from reactive hypercytosis and myelofibrosis, and also may identify a subgroup within TN-ET showing distinct clinical features including spontaneous remission.


Asunto(s)
Biomarcadores de Tumor/sangre , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/sangre , Trastornos Mieloproliferativos/diagnóstico , Proteínas del Tejido Nervioso/sangre , Diagnóstico Diferencial , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/sangre , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Trastornos Mieloproliferativos/sangre
12.
Leukemia ; 34(2): 499-509, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31462733

RESUMEN

Studies have shown that mutant calreticulin (CALR) constitutively activates the thrombopoietin (TPO) receptor MPL and thus plays a causal role in the development of myeloproliferative neoplasms (MPNs). To further elucidate the molecular mechanism by which mutant CALR promotes MPN development, we studied the subcellular localization of mutant CALR and its importance for the oncogenic properties of mutant CALR. Here, mutant CALR accumulated in the Golgi apparatus, and its entrance into the secretion pathway and capacity to interact with N-glycan were required for its oncogenic capacity via the constitutive activation of MPL. Mutant CALR-dependent MPL activation was resistant to blockade of intracellular protein trafficking, suggesting that MPL is activated before reaching the cell surface. However, removal of MPL from the cell surface with trypsin shut down downstream activation, implying that the surface localization of MPL is required for mutant CALR-dependent activation. Furthermore, we found that mutant CALR and MPL interact on the cell surface. Based on these findings, we propose a model in which mutant CALR induces MPL activation on the cell surface to promote MPN development.


Asunto(s)
Calreticulina/genética , Mutación/genética , Receptores de Trombopoyetina/genética , Vías Secretoras/genética , Línea Celular , Transformación Celular Neoplásica/genética , Humanos , Trastornos Mieloproliferativos/genética , Transducción de Señal/genética , Tripsina/genética
14.
Eur J Haematol ; 102(6): 516-520, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30977935

RESUMEN

OBJECTIVE: Prefibrotic/early primary myelofibrosis (pre-PMF) and essential thrombocythemia (ET) exhibited different features of bone marrow; however, this is not always easy to judge objectively, making pathologists' distinction often suboptimal. In the WHO 2008 criteria, pre-PMF was not defined as a subgroup of PMF; therefore, affected patients were at a higher risk of misdiagnosis with ET. In this study, we examined the prevalence of pre-PMF patients among those previously diagnosed with ET in Japan. METHOD: We reviewed bone marrow specimens and clinical and molecular parameters of patients who were previously diagnosed with ET by the WHO 2008 criteria. RESULTS: Among 107 ET patients, 13 patients were redefined as having pre-PMF. Pre-PMF patients exhibited a higher frequency of MPL mutation and increased platelet counts compared to true ET patients. Molecular analysis revealed the frequencies of high-risk molecular mutations, such as ASXL1, EZH2, and SRSF2, were significantly increased in pre-PMF patients than those in true ET patients. CONCLUSION: These results demonstrated the value of reexamining clinical records for patients diagnosed with ET by the WHO 2008 criteria and emphasized that adequate examinations of patients' bone marrow are crucial for an accurate diagnosis of pre-PMF and ET.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Mielofibrosis Primaria/diagnóstico , Mielofibrosis Primaria/genética , Trombocitemia Esencial/diagnóstico , Trombocitemia Esencial/genética , Adolescente , Adulto , Anciano , Biomarcadores , Biopsia , Médula Ósea/patología , Diagnóstico Diferencial , Femenino , Humanos , Janus Quinasa 2/genética , Japón , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
16.
Leukemia ; 33(1): 122-131, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29946189

RESUMEN

Studies have previously shown that mutant calreticulin (CALR), found in a subset of patients with myeloproliferative neoplasms (MPNs), interacts with and subsequently promotes the activation of the thrombopoietin receptor (MPL). However, the molecular mechanism behind the activity of mutant CALR remains unknown. Here we show that mutant, but not wild-type, CALR interacts to form a homomultimeric complex. This intermolecular interaction among mutant CALR proteins depends on their carboxyl-terminal domain, which is generated by a unique frameshift mutation found in patients with MPN. With a competition assay, we demonstrated that the formation of mutant CALR homomultimers is required for the binding and activation of MPL. Since association with MPL is required for the oncogenicity of mutant CALR, we propose a model in which the constitutive activation of the MPL downstream pathway by mutant CALR multimers induces the development of MPN. This study provides a potential novel therapeutic strategy against mutant CALR-dependent tumorigenesis via targeting the intermolecular interaction among mutant CALR proteins.


Asunto(s)
Calreticulina/química , Transformación Celular Neoplásica/patología , Leucemia Eritroblástica Aguda/patología , Proteínas Mutantes/química , Mutación , Receptores de Trombopoyetina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Humanos , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Multimerización de Proteína , Trombopoyetina/genética , Trombopoyetina/metabolismo , Células Tumorales Cultivadas
17.
Oncotarget ; 9(92): 36515-36529, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30559934

RESUMEN

Glyoxalase 1 (GLO1) is a ubiquitous enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis that induces apoptosis. In this study, we found that GLO1 gene expression correlates with neoplasm histologic grade (χ 2 test, p = 0.002) and is elevated in human basal-like breast cancer tissues. Approximately 90% of basal-like cancers were grade 3 tumors highly expressing both GLO1 and the cancer stem cell marker ALDH1A3. ALDH1high cells derived from the MDA-MB 157 and MDA-MB 468 human basal-like breast cancer cell lines showed elevated GLO1 activity. GLO1 inhibition using TLSC702 suppressed ALDH1high cell viability as well as the formation of tumor-spheres by ALDH1high cells. GLO1 knockdown using specific siRNAs also suppressed ALDH1high cell viability, and both TLSC702 and GLO1 siRNA induced apoptosis in ALDH1high cells. These results suggest GLO1 is essential for the survival of ALDH1-positive breast cancer stem cells. We therefore conclude that GLO1 is a potential therapeutic target for treatment of basal-like breast cancers.

18.
Br J Haematol ; 181(6): 791-802, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29741776

RESUMEN

Somatic mutations in the calreticulin (CALR) gene have been found in most patients with JAK2- and MPL-unmutated Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). It has recently been shown that mutant CALR constitutively activates the thrombopoietin receptor MPL and, thus, plays a causal role in the development of MPNs. However, the roles of mutant CALR in human haematopoietic cell differentiation remain predominantly elusive. To examine the impact of the 5-base insertion mutant CALR gene (Ins5) on haematopoietic cell differentiation, we generated induced pluripotent stem cells from an essential thrombocythaemia (ET) patient harbouring a CALR-Ins5 mutation and from a healthy individual (WT). Megakaryopoiesis was more prominent in Ins5-haematopoietic progenitor cells (Ins5-HPCs) than in WT-HPCs, implying that the system recapitulates megakaryocytosis observed in the bone marrow of CALR-mutant ET patients. Ins5-HPCs exhibited elevated expression levels of GATA1 and GATA2, suggesting a premature commitment to megakaryocytic differentiation in progenitor cells. We also demonstrated that 3-hydroxy anagrelide markedly perturbed megakaryopoiesis, but not erythropoiesis. Collectively, we established an in vitro model system that recapitulates megakaryopoiesis caused by mutant CALR. This system can be used to validate therapeutic compounds for MPN patients harbouring CALR mutations and in detailed studies on mutant CALR in human haematological cell differentiation.


Asunto(s)
Calreticulina/metabolismo , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Mutación , Mielopoyesis , Calreticulina/genética , Femenino , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Megacariocitos/citología
19.
Int J Hematol ; 105(6): 743-747, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28470469

RESUMEN

Recurrent somatic mutations in calreticulin (CALR) gene that encodes a molecular chaperone residing in the endoplasmic reticulum were identified in 2013 in a subset of patients with myeloproliferative neoplasms (MPNs). All of these mutations found in patients were either small insertion or deletion in a narrow region on exon 9 of CALR gene, and caused +1 frameshift in the reading frame for the translation of the carboxyl-terminus of CALR. Because of this unique feature, the CALR mutation is believed to be a gain-of-function mutation. However, there was essentially no rationale model to implicate the involvement of mutant CALR in the pathogenesis of MPN or other malignancies. Based on the recent findings, this review summarizes a novel molecular mechanism by which this mutant molecular chaperone constitutively activates the cytokine receptor to induce cellular transformation in MPNs.


Asunto(s)
Calreticulina , Mutación del Sistema de Lectura , Neoplasias Hematológicas , Trastornos Mieloproliferativos , Proteínas de Neoplasias , Calreticulina/genética , Calreticulina/metabolismo , Exones , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Dominios Proteicos
20.
J Biol Chem ; 292(7): 2815-2829, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28053092

RESUMEN

Differentiation therapy with all-trans-retinoic acid (ATRA) improves the treatment outcome of acute promyelocytic leukemia (APL); however, the molecular mechanism by which ATRA induces granulocytic differentiation remains unclear. We previously reported that the inhibition of the NAD-dependent histone deacetylase (HDAC) SIRT2 induces granulocytic differentiation in leukemia cells, suggesting the involvement of protein acetylation in ATRA-induced leukemia cell differentiation. Herein, we show that p300/CREB-binding protein-associated factor (PCAF), a histone acetyltransferase (HAT), is a prerequisite for ATRA-induced granulocytic differentiation in leukemia cells. We found that PCAF expression was markedly increased in leukemia cell lines (NB4 and HL-60) and primary APL cells during ATRA-induced granulocytic differentiation. Consistent with these results, the expression of PCAF was markedly up-regulated in the bone marrow cells of APL patients who received ATRA-containing chemotherapy. The knockdown of PCAF inhibited ATRA-induced granulocytic differentiation in leukemia cell lines and primary APL cells. Conversely, the overexpression of PCAF induced the expression of the granulocytic differentiation marker CD11b at the mRNA level. Acetylome analysis identified the acetylated proteins after ATRA treatment, and we found that histone H3, a known PCAF acetylation substrate, was preferentially acetylated by the ATRA treatment. Furthermore, we have demonstrated that PCAF is required for the acetylation of histone H3 on the promoter of ATRA target genes, such as CCL2 and FGR, and for the expression of these genes in ATRA-treated leukemia cells. These results strongly support our hypothesis that PCAF is induced and activated by ATRA, and the subsequent acetylation of PCAF substrates promotes granulocytic differentiation in leukemia cells. Targeting PCAF and its downstream acetylation targets could serve as a novel therapeutic strategy to overcome all subtypes of AML.


Asunto(s)
Diferenciación Celular/fisiología , Granulocitos/efectos de los fármacos , Leucemia Mieloide Aguda/patología , Tretinoina/farmacología , Factores de Transcripción p300-CBP/fisiología , Acetilación , Antígeno CD11b/genética , Diferenciación Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Granulocitos/patología , Células HL-60 , Histonas/metabolismo , Humanos , Factores de Transcripción p300-CBP/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA