Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 252(Pt 3): 118976, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705451

RESUMEN

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.


Asunto(s)
Compuestos de Alumbre , Industria Lechera , Fosfatos , Aguas del Alcantarillado , Adsorción , Fosfatos/química , Aguas del Alcantarillado/química , Compuestos de Alumbre/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cinética , Modelos Químicos
2.
Gels ; 10(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391463

RESUMEN

Mesoporous materials containing heteroelements have a huge potential for use as catalysts, exchangers, and adsorbents due to their tunable nanometer-sized pores and exceptionally large internal surfaces accessible to bulky organic molecules. In the present work, ordered mesoporous silica containing Ni atoms as active sites was synthesized by a new low-temperature method of condensation of silica precursors on a micellar template from aqueous solutions in the presence of nickel salt. The homogeneity of the resulting product was achieved by introducing ammonia and ammonium salt as a buffer to maintain a constant pH value. The obtained materials were characterized by nitrogen sorption, X-ray and neutron diffraction, scanning electron microscopy, infrared spectroscopy, and thermal analysis. Their morphology consists of polydisperse spherical particles 50-300 nm in size, with a hexagonally ordered channel structure, high specific surface area (ABET = 900-1200 m2/g), large pore volume (Vp = 0.70-0.90 cm3/g), average mesopore diameter of about 3 nm, and narrow pore size distribution. Adsorption tests for methylene blue show sorption capacities reaching 39-42 mg/g at alkaline pH. The advantages of producing nickel silicates by this method, in contrast to precipitation from silicon alkoxides, are the low cost of reagents, fire safety, room-temperature processing, and the absence of specific problems associated with the use of ethanol as a solvent, as well as the absence of the inevitable capture of organic matter in the precipitation process.

3.
J Environ Manage ; 352: 120152, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38266528

RESUMEN

Production of artificial humic substances (AHS) from waste biomass will contribute to environmental protection and agricultural productivity. However, there is still a lack of a faster, more efficient and eco-friendly way for sustainable production. In this study, we proposed a method to accelerate the production of AHS from cotton stalks by mild pyrolysis and H2O2 oxidation in only 4 hours, and investigated the formation of AHS during biomass transformation. We found that the process increased the aromatic matrix and facilitated biomass transformation by enhancing the depolymerization of lignin into micromolecular phenolics (e.g., guaiacol, p-ethyl guaiacol, etc.). The optimum conditions of pyrolysis at 250 °C and oxidation with 6 mL H2O2 (5 wt%) yielded up to 19.28 ± 1.30 wt% artificial humic acid (AHA) from cotton stalks. In addition, we used iron oxyhydroxide (FeOOH) to catalyze biomass transformation and investigated the effect of FeOOH on the composition and properties of AHS. 1.5 wt% FeOOH promoted the increased content of artificial fulvic acid (AFA) in AHS from 10.1% to 26.5%, eventually improving the activity of AHS. FeOOH raised the content of oxygen-containing groups, such as carboxylic acids and aldehyde, and significantly increased polysaccharide (10.94%-18.95%) and protein (1.95%-2.18%) derivatives. Polymerization of amino acid analogs and many small-molecule carbohydrates (e.g., furans, aldehydes, ketones, and their derivatives) promoted AFA formation. Finally, carbon flow analysis and maize incubation tests confirmed that AHS were expected to achieve carbon emission reductions and reduce environmental pollution from fertilizers. This study provides a sustainable strategy for the accelerated production of AHS, which has important application value for waste biomass resource utilization.


Asunto(s)
Compuestos Férricos , Sustancias Húmicas , Peróxido de Hidrógeno , Sustancias Húmicas/análisis , Biomasa , Carbono/química , Guayacol
4.
Environ Res ; 217: 114914, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36427635

RESUMEN

Microbial reduction of hexavalent chromium (Cr (VI)) shows better efficiency and cost-effectiveness. However, immobilization of Cr (III) remains a challenge as there is a limited supply of electron donors. A greener and cleaner option for donating external electrons was using bioelectrochemical systems to perform the microbial reduction of Cr(VI). In this system, we constructed a polydopamine (PDA) decorated Shewanella oneidensis MR-1 (S. oneidensis MR-1) bioelectrode with bidirectional electron transport, abbreviated as PDA@S. oneidensis MR-1. The conjugated PDA distributed on the intracellular and extracellular of individual S. oneidensis MR-1 has been shown to accelerate electron transfer by outer membrane C-type cytochromes and flavin-bound MtrC/OmcA pathway by various electrochemical analyses. As expected, the PDA@S. oneidensis MR-1 biofilm achieved 88.1% Cr (VI) removal efficiency (RE) and 58.1% Cr (III) immobilization efficiency (IE) within 24 h under the autotrophic conditions at the optimal voltage (-150 mV) compared with the control potential (0 mV). The PDA@S. oneidensis MR-1 biofilm showed increased RE activity was attributed to the shortening of the distance between individual bacteria by PDA. This research provides a viable strategy for in situ bioremediation of Cr(VI) polluted aquatic environment.


Asunto(s)
Electrones , Shewanella , Transporte de Electrón , Oxidación-Reducción , Shewanella/metabolismo
5.
Environ Res ; 216(Pt 2): 114567, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244441

RESUMEN

The recovery of heavy metals from electroplating sludge is important for alleviating heavy metal pollution and recycling metal resources. However, the selective recovery of metal resources is limited by the complexity of electroplating sludge. Herein, CuFe bimetallic Fenton-like catalysts were successfully prepared from electroplating sludge by a facile room-temperature ultrasonic-assisted co-precipitation method. The prepared CuFe-S mainly consisted of nanorods with diameters of 20-30 nm and lengths of 100-200 nm and a small number of irregular particles. Subsequently, we performed tetracycline (TC) degradation experiments, and the results showed that the product CuFe-S had very good performance over a wide pH range (2-11). At an initial pH = 2, CuFe-S could degrade 91.9% of 50 mg L-1 TC aqueous solution within 30 min, which is better than that of a single metal catalyst. Free radical scavenging experiments and electron paramagnetic resonance (EPR) tests revealed that ·OH was the main active species for the degradation of TC by CuFe-S. In conclusion, a CuFe bimetallic Fenton-like catalyst was developed for the catalytic degradation of antibiotics, which provides a novel technical route for the resource utilization of electroplating sludge and shows an important practical application prospect.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Galvanoplastia , Cobre , Catálisis , Antibacterianos , Peróxido de Hidrógeno
6.
Chemosphere ; 311(Pt 1): 136804, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36228723

RESUMEN

Keeping the high potential of some microorganisms in adsorption of radionuclides in view, the adsorption properties of Enterobacter cloacae towards uranium were attentively scrutinized, and then it was used for preconcentration of uranium in different samples, using Enterobacter cloacae/carbon nanotube composite. First, using ultrasonic agitation, the effects of operational factors on biosorption of uranium on the inactive Enterobacter cloacae were appraised and modeled by central composite design, and a comprehensive study was performed on the equilibrium, kinetics, thermodynamic, and selectivity aspects of biosorption. The optimization studies along with the evaluations of the adsorption properties revealed that Enterobacter cloacae have a high affinity for fast and selective biosorption of uranium ions, at pH 5.1. Second, the Enterobacter cloacae/carbon nanotube was synthesized, characterized, and utilized for preconcentration of uranium in different samples, using a mini-column packed with the composite. The optimization of operational factors on recovery of uranium, using the central composite design, showed that uranium can be quantitively adsorbed at a sample flow rate lower than 4.5 mL min-1 and the desorption could be accomplished with 3.0 mL HCl 0.6 M solution. Finally, the mini-column was exploited for preconcentration and determination of uranium in different samples. The results revealed the low detection limit (0.015 µg.L-1), high precision (RSDs ≤3.92%), and good accuracy of the proposed procedure.


Asunto(s)
Nanotubos de Carbono , Uranio , Uranio/análisis , Adsorción , Enterobacter cloacae , Iones , Cinética , Agua , Concentración de Iones de Hidrógeno
7.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806220

RESUMEN

The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.


Asunto(s)
Nanopartículas , Alcohol Polivinílico , Resinas Acrílicas , Silicatos de Aluminio , Deshidratación , Etanol/química , Humanos , Membranas Artificiales , Alcohol Polivinílico/química , Dióxido de Silicio , Agua/química
8.
Chemosphere ; 304: 135303, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691392

RESUMEN

Biochar derived from municipal sludge can be applied to adsorption. But it usually requires activation and pickling due to the generation of impurities such as metal oxide particles, which is uneconomical. Here, a facile strategy, acidification-one-step calcination, was developed and sludge-based Fe-C materials with good Cr(VI) removal effect were obtained by regulating the amount of hydrochloric acid. The results show that the adsorption capacity of Fe/C-5 (the best sample) for Cr(VI) was 150.84 mg g-1. According to the Langmuir isotherm and pseudo-second-order kinetic model, the removal of Cr(VI) by Fe/C-5 is spontaneous and endothermic chemisorption process. In addition, Fe/C-5 has good ability to remove Cr(VI) under the interference of coexisting ions, and has good cycle stability. The removal of Cr(VI) by Fe/C-5 is considered to be synergistic process of adsorption and reduction. The Fe atoms were highly dispersed in Fe/C-5 and tightly bonded with C atoms, which not only strengthened the Cr(VI) adsorption by electrostatic attraction, but also activated the C atoms in the biochar material, so that the C atoms can reduce Cr(VI) to Cr(III) under acidic conditions. This may be due to the fact that acid pretreatment converted the iron in municipal sludge in the form of Fe-O/OH to free Fe3+ and entered the C lattice during the calcination process. In this work, Fe-C materials with excellent Cr(VI) adsorption capacity were prepared by one-step calcination method, which has important reference significance for the resource utilization of municipal sludge.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cromo/análisis , Cinética , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Pollut Res Int ; 29(50): 75989-76002, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35665888

RESUMEN

The environmental pollution by toxic Co(II) ions had a negative impact on living organisms and water resources. The amorphous Zr-Ca-Mg and Ti-Ca-Mg phosphates with varied Zr and Ti content with the mesoporous structure (ABET = 19-232 m2/g, Vdes. = 0.075-0.370 cm3/g, Ddes. = 6.2-10.9 nm) were synthesized. The effect of adsorbent chemical composition, the presence of competing ions (0.1-1.0 M NaCl and 0.01-0.1 M CaCl2 backgrounds), and pH (3.0-7.0) of aqueous solution on adsorption removal of Co(II) ions by Zr-Ca-Mg and Ti-Ca-Mg phosphates was studied. The highest adsorption capacity of Zr-Ca-Mg-1 and Ti-Ca-Mg-1 samples reached 253.3 and 212.8 mg/g. The prepared adsorbents demonstrated high efficiency at pH in the range of 3.0-7.0 and the presence of 0.1-1.0 M NaCl and seawater with a salinity of 35.0 g/L backgrounds. The chemisorption and ion-exchange mechanisms of Co(II) ions removal for Zr-Ca-Mg and Ti-Ca-Mg phosphates were proposed. The adsorption isotherms were well fitted with Sips and Langmuir models that proved the heterogeneous nature of adsorption sites as well as assumed the monolayer adsorption that occurs at specific homogeneous sites within the adsorbent without any interaction between the adsorbed substances. The kinetic data was well described by the pseudo-second-order model that is suitable for chemisorption processes as liming adsorption stage. The presented results shown the prospects of developed adsorbents for the investigation of real wastewater treatment from heavy metal ions and liquid radioactive waste purification.


Asunto(s)
Metales Pesados , Residuos Radiactivos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cloruro de Calcio , Concentración de Iones de Hidrógeno , Iones , Cinética , Fosfatos/química , Cloruro de Sodio , Titanio , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
10.
Environ Sci Pollut Res Int ; 29(50): 75651-75663, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35657557

RESUMEN

Natural chalcopyrite was evaluated as heterogeneous Fenton catalyst. Catalytic performance was evaluated considering different systems, catalyst dosage, H2O2 concentration, and reaction temperature, and increasing the parameters favors rhodamine B degradation. Effect of aqueous matrix was systematically examined, involving solution pH, anions, cations, dissolved organic matter, and initial pollutant concentration. The degradation performance is slightly influenced by these parameters. Rhodamine B removal is 96.5% within 120 min, the rate constant ranges from 0.0086 min-1 to 0.0415 min-1 depending on temperature, and the activation energy is 79 kJ/mol. Effective degradation of different persistent organic pollutants including methylene blue, malachite green, sodium butyl xanthate, tetracycline, and p-nitrophenol is verified by UV-vis spectra. Natural chalcopyrite was characterized by advanced techniques including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Reactions between chalcopyrite and H2O2 cause copper leaching and iron oxidation. Quenching experiments and electron paramagnetic resonance reveal the dominant role of hydroxyl radical in catalytic process. The catalytic mechanism induced by surface iron and leached copper derived from chalcopyrite is proposed.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Catálisis , Cobre/química , Peróxido de Hidrógeno/química , Radical Hidroxilo , Hierro/química , Azul de Metileno , Contaminantes Orgánicos Persistentes , Sodio , Tetraciclina , Agua , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 834: 155312, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35439513

RESUMEN

The synergistic effect of heteroatoms is a viable method to enhance the adsorption performance of heavy metal onto carbon-based materials. However, the high cost, complex operation and a lot of pollution from the synthesis process have limited its development. Herein, a facile two-step pyrolysis method is used to prepare in situ N and S doped porous biochar from paper mill sludge for the removal of Cr(VI) from aqueous environment. The NSC-450 sample prepared under the optimum conditions has a large specific surface area of 3336.7 m2 g-1, an average pore size of 2.56 nm and a total pore volume of 2.10 cm3 g-1, manifesting the excellent adsorption capacity of 356.25 mg g-1 for Cr(VI). The adsorption of Cr(VI) by NSC-450 is consistent with the Langmuir isotherm and pseudo-second-order model, suggesting a spontaneous and endothermic chemisorption process. The analysis results show that the NH, graphitic nitrogen and thiophene structures have a positive effect on converting a large amount of Cr(VI) to Cr(III) by synergistic reduction, indicating obviously facilitating Cr(VI) removal compared to other sites. Therefore, in this material, the strong adsorption mechanism is mainly reductive complexation. Moreover, the effects of real water quality, anions, cations and fulvic acid on the adsorption behavior of Cr(VI) onto the NSC-450 were further investigated. The results demonstrate that the chromium removal rate remains above 82% even in actual electroplating wastewater, suggesting NSC-450 has great practical application prospect. This work offered a feasible method for high-value utilization of sludge, but also provided a novel perspective for the future design of heteroatom-doped carbon materials for promoting to eliminate hexavalent chromium from water environment.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Adsorción , Carbono , Carbón Orgánico/química , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética , Porosidad , Contaminantes Químicos del Agua/análisis
12.
J Hazard Mater ; 411: 124902, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-33858077

RESUMEN

The adsorption behavior of magnesium ferrite in single- and multicomponent metal ions solutions in the presence of Mg2+ ions were studied. A dramatic decrease in the adsorption capacity of magnesium ferrite towards Mn2+, Co2+, and Ni2+ ions for comparison study of single- and multicomponent solutions was established. The affinity of the sorbent in accordance with the maximum sorption capacities increases in the following order Cu2+ > Co2+ > Ni2+ > Mn2+. High efficiency of magnesium ferrite regeneration (~100%) with aqueous solutions of magnesium chloride in the concentration range of 0.001-0.1 M was shown. The low degree of toxic metal ions desorption combined with XRD, IR spectroscopy, and EDX analysis data indicate the key role of Mg2+ ion adsorption in the magnesium ferrite adsorbent regeneration. The positive effect of the introduction of Mg2+ ions into multicomponent solutions on metal ions adsorption was established, which is accompanied by an increase in the maximum sorption capacity for all metal ions and especially significant increase in the selectivity towards Cu2+ ions (2.41 mmol/g). The stability of the crystal structure of magnesium ferrite and a low degree of Mg2+ and Fe3+ ions leaching during multiple cycles of adsorption and regeneration of the adsorbent were observed.

13.
Water Sci Technol ; 82(5): 984-997, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33031075

RESUMEN

The research aimed to develop a novel mesoporous aluminosilicate/zeolite composite by the template co-precipitation method. The effect of aluminosilicate (AlSi) and zeolite (NaY) on the basic properties and adsorption capacity of the resultant composite was conducted at different mass ratios of AlSi/NaY (i.e., 5/90, 10/80, 15/85, 20/80, and 50/50). The adsorption characteristics of such composite and its feedstock materials (i.e., aluminosilicates and zeolite) towards radioactive Sr2+ ions and toxic metals (Cu2+ and Pb2+ ions) in aqueous solutions were investigated. Results indicated that BET surface area (SBET), total pore volume (VTotal), and mesopore volume (VMeso) of prepared materials followed the decreasing order: aluminosilicate (890 m2/g, 0.680 cm3/g, and 0.644 cm3/g) > zeolite (623 m2/g, 0.352 cm3/g, and 0.111 cm3/g) > AlSi/NaY (20/80) composite (370 m2/g, 0.254 cm3/g, and 0.154 cm3/g, respectively). The Langmuir maximum adsorption capacity (Qm) of metal ions (Sr2+, Cu2+, and Pb2+) in single-component solution was 260 mg/g, 220 mg/g, and 161 mg/g (for zeolite), 153 mg/g, 37.9 mg/g, and 66.5 mg/g (for aluminosilicate), and 186 mg/g, 140 mg/g, and 77.8 mg/g for (AlSi/NaY (20/80) composite), respectively. Ion exchange was regarded as a domain adsorption mechanism of metal ions in solution by zeolite; meanwhile, inner-surface complexation was domain one for aluminosilicate. Ion exchange and inner-surface complexation might be mainly responsible for adsorbing metal ions onto the AlSi/NaY composite. Pore-filling mechanism was a less important contributor during the adsorption process. The results of competitive adsorption under binary-components (Cu2+ and Sr2+) and ternary-components (Cu2+, Pb2+, and Sr2) demonstrated that the removal efficacy of target metals by the aluminosilicate, zeolite, and their composite remarkably decreased. The synthesized AlSi/NaY composite might serve as a promising adsorbent for real water treatment.


Asunto(s)
Zeolitas , Silicatos de Aluminio , Iones , Plomo
14.
J Environ Manage ; 223: 1001-1009, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30096741

RESUMEN

Ammonium nitrate (NH4NO3) with explosive characteristics at high temperatures was used as a novel activating reagent to prepare a surface-engineered activated carbon derived from pistachio wood wastes (PWAC). PWAC was characterized and compared with commercial activated carbon (CAC) by textural and morphological properties, surface chemistry, crystal structure, and surface elemental composition. The results indicated that the optimal conditions of PWAC preparation to obtain the highest mercury adsorption capacity were pyrolysis temperature (800 °C), pyrolysis time (2 h), and impregnation ratio (5%). PWAC was of highly regular-shaped and well-developed pores and possessed a large surface area (1448 m2/g) and high total pore volume (0.901 cm3/g). The batch experiments indicated that the adsorption process of Hg(II) was strongly dependent on the solution pH and reached fast equilibrium at approximately 30 min. PWAC (202 mg/g) exhibited a significantly higher maximum adsorption capacity than commercial activated carbon (66.5 mg/g). Adsorbent-adsorbate dispersion interaction plays a major role in the adsorption mechanism, compared to the minor role played by pore filling and reduction mechanism. Overall, ammonium nitrate can be considered a newer activating reagent to prepare promising and low-cost PWAC for effectively Hg(II) removal from water media.


Asunto(s)
Mercurio/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Madera , Adsorción , Carbono , Carbón Orgánico , Mercurio/química , Pistacia , Aguas Residuales , Contaminantes Químicos del Agua/química , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA