RESUMEN
As the drive towards recycling electronic waste increases, demand for rapid and reliable analytical methodology to analyse the metal content of the waste is increasing, e.g. to assess the value of the waste and to decide the correct recycling routes. Here, we comprehensively assess the suitability of different x-ray fluorescence spectroscopy (XRF)-based techniques as rapid analytical tools for the determination of critical raw materials, such as Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Nb, Pd and Au, in three electronic waste matrices: printed circuit boards (PCB), light emitting diodes (LED), and lithium (Li)-ion batteries. As validated reference methods and materials to establish metrological traceability are lacking, several laboratories measured test samples of each matrix using XRF as well as other independent complementary techniques (instrumental neutron activation analysis (INAA), inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (OES)) as an inter-laboratory comparison (ILC). Results highlighted key aspects of sample preparation, limits of detection, and spectral interferences that affect the reliability of XRF, while additionally highlighting that XRF can provide more reliable data for certain elements compared to digestion-based approaches followed by ICP-MS analysis (e.g. group 4 and 5 metals). A clear distinction was observed in data processing methodologies for wavelength dispersive XRF, highlighting that considering the metals present as elements (rather than oxides) induces overestimations of the mass fractions when compared to other techniques. Eventually, the effect of sample particle size was studied and indicated that smaller particle size (<200 µm) is essential for reliable determinations.
RESUMEN
New values of neutron fluxes and spectral parameters f and α were determined experimentally in all irradiation devices of the TRIGA Mark I IPR-R1 nuclear research reactor at Nuclear Technology Development Centre (CDTN), Belo Horizonte, Brazil. Sets of monitors Au, Fe, Zn and Zr were irradiated bare and Cd-covered, according to "Cd-ratio for multi-monitor" method. Values were validated by analysing the certified reference material BCR-320R irradiated in chosen channels. The calculations were made based on irradiation channel values and the average values of the Carousel. The results of E n -score point out that the k 0-method is producing reliable results. From now on, the values of mass fractions in several matrices, the production and studies with radioisotopes will be more accurate and the activities calculated more precisely.
RESUMEN
This study set out to evaluate the effect of using sewage sludge-derived compost (SSC) or biochar (SSB) as a soil amendment on the phytoaccumulation of potentially toxic elements, PTE (Cd, Cr, Cu, Ni, Pb, Zn) and natural radionuclides (238U and 232Th) by Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) in terra rossa and rendzina soils, which are the two common soil types in Croatia. The experiment consisted of a greenhouse pot trial using a three-factor design where soil type, sludge post-stabilisation procedure and amendment rate (12 and 120 mgP/L) were the main factors. At harvest, the concentrations of analytes in the substrate, leaves and roots were measured, from which the edible tissue uptake (ETU) and concentration ratios (CR) were determined. Also, the average daily dose (ADD) and hazard quotient (HQ) were determined to assess the health risk, as well as soil contamination factor (CF). The results showed that neither adding SSC nor SSB affected the soil loading at the rates applied, suggesting a low risk of soil contamination (CF ≤ 1). The ETU of Cd, Cu, and Zn were 0.0061, 1.23, and 0.91 mg/plant from compost-amended soil and 0.0046, 0.78 and 0.65 mg/plant for biochar-amended soil, respectively. This difference suggests that their ETU was higher in compost-amended soils than in soils treated with biochar. The CR data indicate that the bioavailability of Cu (CR of 5.30) is highest at an amendment rate of 12 mgP/L, while for Zn (CR of 0.69), the highest bioaccumulation was observed with an amendment rate of 120 mgP/L. Translocation of Cr, Ni, Pb and 238U to the leaves was limited. Overall, the HQ (<1) for Cd, Cu and Zn in the edible parts confirmed that consuming Chinese cabbage does not threaten human health. Similarly, the daily intake of 232Th remained below the limit (3 µg) set by ICRP, suggesting no radiological risk. Finally, although the amendment rate, which was 10-times the amount stipulated in Croatian regulation and the CR ranged from 0.007 to 5.30, the precautionary principle is advised, and the long-term impact of sewage sludge derived compost or biochar on different plant groups (incl. root vegetables) at the field-scale is recommended.
Asunto(s)
Brassica , Compostaje , Metales Pesados , Contaminantes del Suelo , Carbón Orgánico , China , Croacia , Humanos , Metales Pesados/análisis , Radioisótopos , Aguas del Alcantarillado , Suelo , Contaminantes del Suelo/análisisRESUMEN
Understanding atmospheric mercury chemistry is the key for explaining the biogeochemical cycle of mercury and for improving the predictive capability of computational models. Increased efforts are being made to ensure comparable Hg speciation measurements in the air through establishing metrological traceability. While traceability for elemental mercury has been recently set, this is by no means the case for gaseous oxidized mercury (GOM). Since a calibration unit suitable for traceable GOM calibrations based on evaporation of HgCl2 solution was recently developed, the purpose of our work was to extensively evaluate its performance. A highly specific and sensitive 197Hg radiotracer was used for validation over a wide range of concentrations. By comparing experimental and calculated values, we obtained recoveries for the calibration unit. The average recoveries ranged from 88.5% for 1178 ng m-3 HgCl2 gas concentration to 39.4% for 5.90 ng m-3 HgCl2 gas concentration. The losses were due to the adsorption of oxidized Hg on the inner walls of the calibrator and tubing. An adsorption isotherm was applied to estimate adsorption enthalpy (ΔHads); a ΔHads value of -12.33 kJ mol-1 was obtained, suggesting exothermal adsorption. The results of the calibrator performance evaluation suggest that a newly developed calibration unit is only suitable for concentrations of HgCl2 higher than 1 µg m-3. The concentration dependence of recoveries prevents the system from being used for calibration of instruments for ambient GOM measurements. Moreover, the previously assessed uncertainty of this unit at µg m-3 level (2.0%, k = 2) was re-evaluated by including uncertainty related to recovery and was found to be 4.1%, k = 2. Calibrator performance was also evaluated for HgBr2 gas calibration; the recoveries were much lower for HgBr2 gas than for HgCl2 gas even at a high HgBr2 gas concentration (>1 µg m-3). As HgBr2 is often used as a proxy for various atmospheric HgBr species, the suitability of the unit for such calibration must be further developed.
RESUMEN
Particulate matter (PM) is the major environmental pollutant. Its elemental composition is routinely monitored. Inductively coupled plasma mass spectroscopy (ICPMS) is commonly applied after a PM sample has been digested by an acid during a microwave treatment. In this case, sample preparation procedure is laborious, sometimes incomplete and produces toxic waste. In this paper we show that direct sample introduction to ICPMS by laser ablation (LA-ICPMS) is of huge advantage. Minimal quantity of a sample is required for the analysis (<1 cm2) and no chemical waste is produced. The study focused on the most universal and widely used quartz fibre filter samples and we show that LA-ICPMS can be successfully applied for the determination of the elemental composition of such samples. Some effort is, however, still needed to develop an autosampler for the LA-ICPMS system and to provide commercial matrix-matched standards for this application to be implemented in environment laboratories worldwide.
RESUMEN
Milk has been reported as one of the most adulterated foodstuffs in the developed and developing world. One way to detect adulteration is to determine whether the country of origin on the label could be the actual country of origin. Such profiling may be accomplished through the use of elemental analysis techniques, however this is a preliminary study and this goal is not yet met. In this study, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method was developed for the analysis of solid milk powder and compared to k0-instrumental neutron activation analysis (k0-INAA) for a reference milk material (IAEA-153) as well as several milk samples from different countries. The analytical figures of merit for both the LA-ICP-MS and the k0-INAA analysis are reported. Precision of ~ 10% RSD or better was achieved for most elements for both techniques and bias of ~ 10% was achieved for both techniques for most elements with LA-ICP-MS producing lower limits of detection (~ 1â¯mg/kg) for Sr. The comparison of LA-ICP-MS to k0-INAA showed overlap of the 95% confidence intervals for all comparison samples. A total of 68 authentic milk powder samples representing 5 different countries (Argentina, Russia, Singapore, Slovenia, and the United States) were analyzed to determine whether multivariate elemental differences between the countries were sufficiently larger than within country differences in order to visualize groupings by country. Principle component analysis (PCA) using Na, Mg, Ca, Rb, and Sr show different groups for the United States, Argentina, Singapore, and Slovenia samples of limited representation for each country. However the large number and geographic distribution of samples from Russia were not able to be distinguished from the samples from the United States and Slovenia.
Asunto(s)
Rayos Láser , Leche/química , Polvos/análisis , Animales , Espectrometría de Masas , Análisis de Componente PrincipalRESUMEN
The botanical origin of seven types of Slovenian honey was investigated by analysis of their elemental content using k0-instrumental neutron activation analysis. A total of 28 representative samples were collected from beekeepers all over Slovenia in 2 consecutive years. Nineteen of the 37 elements measured were present in amounts above their LOD. The present study suggests that the determination of only alkali elements might be sufficient for the classification of Slovenian honeys according to their botanical origin. Linden and multifloral honeys can be differentiated on the basis of Na content. The differentiation of forest, spruce, and fir honeys is possible on the basis of differences in Cs, K, and Rb content. The difference between Na and Rb content can be used as a discriminating tool between light and dark honeys, because light honeys (black locust, linden, and multifloral) contained more Na than Rb, whereas it was the opposite for dark honeys (chestnut, forest, spruce, and fir). Statistically significant correlations were found between K and Rb and between K and Cs content. This study represents a considerable step in filling the knowledge gap concerning both the determination of elements present in low concentrations and the botanical origin of Slovenian honey.
Asunto(s)
Miel/análisis , Análisis de Activación de Neutrones , EsloveniaRESUMEN
BACKGROUND: This work presents an initial proposed design of a Prompt Gamma Activation Analysis (PGAA) facility to be installed at the TRIGA IPR-R1, a 60 years old research reactor of the Centre of Development of Nuclear Technology (CDTN) in Brazil. The basic characteristics of the facility and the results of the neutron flux are presented and discussed. FINDINGS: The proposed design is based on a quasi vertical tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room's level where shall be located the rack containing the set sample/detector/shielding. The evaluation of the thermal and epithermal neutron flux in the sample position was done considering the experimental data obtained from a vertical neutron guide, already existent in the reactor, and the simulated model for the facility. METHODS: The experimental determination of the neutron flux was obtained through the standard procedure of using Au monitors in different positions of the vertical tube. In order to validate both, this experiment and calculations of the simulated model, the flux was also determined in different positions in the core used for sample irradiation. The model of the system was developed using the Monte Carlo code MCNP5. CONCLUSION: The preliminary results suggest the possibility of obtaining a beam with minimum thermal flux of magnitude 10(6) cm(-2) s(-1), which confirm the technical feasibility of the installation of PGAA at the TRIGA IPR-R1 reactor. This beam would open new possibilities for enhancing the applications using the reactor.
RESUMEN
As a consequence of over 500 years of mining and smelting activities (1490-1995), and of its natural geological occurrence, the soil in the Idrija region is highly contaminated with Hg. In order to assess the present situation regarding the Hg levels in local food samples, concentrations of total mercury (THg) and monomethyl mercury (MeHg) were determined in selected vegetables, mushrooms and fish from the Idrija Hg mine area. Hg levels in the foodstuffs analysed were not very high but were elevated compared to the levels in food from non-contaminated areas. The study showed that THg accumulates in mushrooms (X=5680ng/g dry weight, Min=346ng/g dry weight, Max=17,100 dry weight) and chicory (X=1950ng/g dry weight, Min=86ng/g dry weight, Max=17,100ng/g dry weight). In addition, Se and Cd concentrations were determined by ICP-MS in those vegetable and mushroom species in which the highest Hg levels were found. The levels of Cd and Se were below the threshold levels. Based on data from previous studies, we can conclude that the levels of Hg in food have not diminished significantly during the past 15 years after closure of the Hg mine. Special attention should be given to vegetables such as chicory, representing a local seasonal vegetable eaten frequently.
Asunto(s)
Agaricales/química , Cichorium intybus/química , Monitoreo del Ambiente/estadística & datos numéricos , Peces/metabolismo , Contaminación de Alimentos/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Minería , Animales , Cadmio/análisis , Monitoreo del Ambiente/métodos , Espectrometría de Masas , Selenio/análisis , Eslovenia , Suelo/análisisRESUMEN
Adolescents require optimum dietary supply of the essential trace mineral selenium (Se); however the absence of reliable and accurate data on the dietary supply of selenium for the adolescent population in Ghanaian residential care orphanages have made it difficult for public health nutritionists to assess the adequacy of the dietary supply. The dietary supply of selenium for adolescents (12-15 years) in three residential care orphanages, (Osu, Tutu-Akwapim and Teshie), in Southern Ghana have been evaluated by sampling their 24-h duplicate diets (including water) for 7-consecutive days using the duplicate diet sampling technique. The mass fraction of selenium in the blended lyophilized homogenates of duplicate diets was determined by radiochemical neutron activation analysis (RNAA). The validity of the RNAA method for selenium determination was checked by analyses of NIST SRM 1548a (Typical diet). The chemical yield of the radiochemical separation was determined by spectrophotometry. The average mass fractions of selenium in the blended lyophilized 24-hour duplicate diets for Osu, Tutu-Akwapim and Teshie were; 165±61 [117.2-285.2], 203±68 [110.5-304.9] and 250±92 [128.8-408.0]ng Seg(-1) lyophilized matter respectively. The average dietary supply of Se were, 57.6±17.3 [42.2-88.4], 82.0±30.7 [44.3-136.2] and 91.7±44.2 [46.0-153.4]µg Se day(-1) for Osu, Tutu-Akwapim and Teshie orphanages respectively. The data generated will help public health nutritionists in the provision of dietary advice and nutritional support for the studied orphanages, as well as other orphanages. The data will also help in the planning of institutional diets.
Asunto(s)
Análisis de Activación de Neutrones/métodos , Selenio/análisis , Oligoelementos/análisis , Adolescente , Dieta , Ghana , Humanos , Orfanatos , Salud PúblicaRESUMEN
Mercury presents a potential risk to the environment and humans, especially in its methylated form. It is among the highest priority environmental pollutants. River Idrijca (Slovenia) is highly contaminated with mercury due to past mercury mining. The aim of this work was to investigate whether the periphyton community in rivers such as Idrijca is a suitable indicator of Hg pollution and of changes in mercury methylation and could serve as an early warning system of increased input of MeHg in the food chain. Periphyton is the only site of primary production in temperate torrential rivers such as Idrijca and is therefore an important link in the food chain. It is also a potential site of Hg accumulation and its introduction to higher trophic levels. Our aim was to assess the response of the periphyton to seasonal and spatial variations in mercury levels and to evaluate its potential as an early warning system of changes in mercury reactivity and mobilization The results indicate that periphyton in a torrential river is too complex and unpredictable to be used as a sole indicator of mercury concentrations and changes in the river. Nevertheless, it can complement environmental measurements due to its importance in the riverine food web.
Asunto(s)
Cianobacterias/metabolismo , Monitoreo del Ambiente , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Minería , Estaciones del Año , Eslovenia , Contaminantes Químicos del Agua/metabolismoRESUMEN
PLD (pulsed laser deposition) is an attractive technique to fabricate thin films with a stoichiometry reflecting that of the target material. Conventional PLD instruments are more or less black boxes in which PLD is performed virtually "blind", i.e. without having great control on the important PLD parameters. In this preliminary study, for the first time, a 213 nm Nd-YAG commercial laser ablation-inductively coupled plasma mass spectrometer (LA-ICPMS) intended for microanalysis work was used for PLD under atmospheric pressure and in and ex situ ICPMS analysis for diagnostics of the thin film fabrication process. A PLD demonstration experiment in a He atmosphere was performed with a Sm(13.8)Fe(82.2)Ta(4.0) target-Ta-coated silicon wafer substrate (contraption with defined geometry in the laser ablation chamber) to transfer the permanent magnetic properties of the target to the film. Although this paper is not dealing with the magnetic properties of the film, elemental analysis was applied as a means of depicting the PLD process. It was shown that in situ ICPMS monitoring of the ablation plume as a function of the laser fluence, beam diameter and repetition rate may be used to ensure the absence of large particles (normally having a stoichiometry somewhat different from the target). Furthermore, ex situ microanalysis of the deposited particles on the substrate, using the LA-ICPMS as an elemental mapping tool, allowed for the investigation of PLD parameters critical in the fabrication of a thin film with appropriate density, homogeneity and stoichiometry.
RESUMEN
This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.
Asunto(s)
Algoritmos , Interpretación Estadística de Datos , Modelos Estadísticos , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Suelo/análisis , Simulación por Computador , Italia , Dosis de Radiación , Reproducibilidad de los Resultados , Tamaño de la Muestra , Sensibilidad y Especificidad , Manejo de Especímenes/métodosRESUMEN
In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.
Asunto(s)
Interpretación Estadística de Datos , Monitoreo de Radiación/métodos , Monitoreo de Radiación/normas , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/normas , Suelo/normas , Italia , Dosis de Radiación , Valores de Referencia , Reproducibilidad de los Resultados , Tamaño de la Muestra , Sensibilidad y Especificidad , Manejo de Especímenes/métodosRESUMEN
In the frame of the international SOILSAMP project, funded and coordinated by the National Environmental Protection Agency of Italy (APAT), uncertainties due to field soil sampling were assessed. Three different sampling devices were applied in an agricultural area using the same sampling protocol. Cr, Sc and Zn mass fractions in the collected soil samples were measured by k(0)-instrumental neutron activation analysis (k(0)-INAA). For each element-device combination the experimental variograms were calculated using geostatistical tools. The variogram parameters were used to estimate the standard uncertainty arising from sampling. The sampling component represents the dominant contribution of the measurement uncertainty with a sampling uncertainty to measurement uncertainty ratio ranging between 0.6 and 0.9. The approach based on the use of variogram parameters leads to uncertainty values of the sampling component in agreement with those estimated by replicate sampling approach.
Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Agricultura , Calibración , Cromo/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Italia , Control de Calidad , Reproducibilidad de los Resultados , Escandio/análisis , Sensibilidad y Especificidad , Manejo de Especímenes/métodos , Incertidumbre , Zinc/análisisRESUMEN
The uptake and metabolism of arsenate, As(V), as a function of time and concentration were examined in the lichen Hypogymnia physodes (L.) Nyl. Lichen thalli were exposed to As(V) in the form of a solution. Exponential uptake of As(V) from 4 microg mL(-1) As(V) solution was accompanied by constant arsenite, As(III), excretion back into the solution. Arsenate taken up into the lichens from 0, 0.1, 1, 10 microg mL(-1) As(V) solutions was partially transformed into As(III), dimethylarsinic acid (DMA) and (mono)methylarsonic acid (MA). 48 h after exposure, the main arsenic compound in the lichens was DMA in 0.1, As(III) in 1 and As(V) in 10 microg mL(-1) treatment. The proportion of methylated arsenic compounds decreased with increasing arsenate concentration in the exposure solution. These results suggest that at least two types of As(V) detoxification exist in lichens; arsenite excretion and methylation.
Asunto(s)
Arseniatos/farmacocinética , Líquenes/metabolismo , Contaminantes Químicos del Agua/farmacocinética , Arsenicales/metabolismo , Arsenitos/metabolismo , Biodegradación Ambiental , Biomasa , Biotransformación , Ácido Cacodílico/metabolismo , Cromatografía Líquida de Alta Presión , Metilación , Lluvia , TiempoRESUMEN
Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T1/2=2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T1/2=46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me197Hg production from 197Hg2+ spike, but also with Hg2+ contamination and Me197Hg artefacts) with marine sediments was about 0.005% g-1 WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g-1 WS, which is far below natural mercury levels. In this case, the amount of Hg2+ reduced to Hg0 (expressed as the percent 197Hg0 recovered with respect to the 197Hg2+ added) varied from 0.13 to 1.6% g-1 WS. Me197Hg production from 197Hg2+ spike after 20 h of incubation of freshwater sediment ranged from 0.02 to 0.13% g-1 WS with mercury additions of 2.5 ng g-1 WS, which is also far below natural levels. 197Hg0 recoveries were low, 0.0058+/-0.0013% g-1 WS, but showed good reproducibility in five replicates. Me197Hg production from 197Hg2+ spiked in freshwater samples ranged from 0.1 to 0.3% over a period of three days with mercury additions of 10 ng L-1. A detection limit of 0.05% for Me197Hg production from 197Hg2+ spike was obtained in seawater in a 25 h incubation experiment with mercury additions of 12 ng L-1.
Asunto(s)
Sedimentos Geológicos/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Bromuros , Agua Dulce , Ácido Clorhídrico , Radioisótopos de Mercurio , Oxidación-Reducción , Compuestos de Potasio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ácidos SulfónicosRESUMEN
The preparation and characterization of a soil reference material (SOIL-1) from a site polluted with mercury due to the past mercury mining in Idrija, Slovenia is reported. Homogeneity tests and intercomparison exercises for total (T-Hg) and methylmercury (MeHg) were performed. In addition, selective sequential extraction was applied for Hg fractionation, and multielemental analyses were performed by k(0) standardization neutron activation analysis (k(0)-INAA) and inductively coupled mass spectrometry (ICP-MS) for other trace elements. Comparison of different analytical methods, as well as the distribution of data were critically evaluated using descriptive statistics and analysis of variance (ANOVA). Due to the nugget effect (cinnabar particles representing more than 90% of the mercury), homogeneity for T-Hg determination was difficult to achieve. The intercomparison exercise indicated that in order to obtain comparable results for total mercury (T-Hg) sample decomposition by HF must be performed. These data are then in good agreement with non-destructive methods such as k(0)-INAA. Accepted reference values calculated taking into account the results obtained by six and three laboratories, respectively, were 67.1+/-11.3 mg kg(-1) for T-Hg and 4.0+/-1.3 ng g(-1) for MeHg (95% confidence intervals). However, the results obtained for Hg fractionation displayed significant differences in the organically bound fraction and elemental Hg. Results obtained by two laboratories using totally different analytical protocols for other elements showed excellent agreement for most elements. In summary, the results obtained for the SOIL-1 sample were of sufficient quality to suggest its use for quality control in laboratories dealing with mercury contaminated soils.
Asunto(s)
Mercurio/análisis , Contaminantes del Suelo/análisis , Compuestos de Metilmercurio/análisis , Estándares de Referencia , EsloveniaRESUMEN
The amounts of the 19 elements As, Br, Ca, Cd, Ce, Co, Cr, Cs, Fe, K, La, Mo, Na, Rb, Sb, Sc, Se, Sm, and Zn in 92 lyophilized autopsy human liver samples from normal subjects have been analyzed by instrumental neutron-activation analysis (INAA). For intercomparison and quality control ten samples were independently analyzed in two institutes, the Institute of High Energy Physics in China and the "Jozef Stefan" Institute in Slovenia. Most of the element contents determined by the two institutes were in quite good agreement, even though different experimental conditions were applied, indicating the reliability of the analytical results. Analysis of the chemical species of mercury present in the ten liver samples was also performed in Slovenia. Possible differences between the element content of male and female liver samples were studied by means of Student's t-test, but significant differences were found only for Ce, Co, Fe, La, Mo, and Zn. The results obtained were also compared with those reported from other areas of the world; no appreciable differences were observed. Correlation among the various elements in the human liver samples was studied using multivariate statistics. It was found that there was relatively close correlation between some elements, for example As-Fe, Ca-Fe, Cd-Co, Cd-Zn, Mo-Zn, Co-Se, Cs-Rb, Br-Rb, Sc-Sm, La-Sm, La-Ce, etc.; these correlations could be rationally explained by the similarity of the electronic structures of the elements and/or their physiological functions in the human body.
Asunto(s)
Hígado/química , Metales Pesados/análisis , Metales de Tierras Raras/análisis , Análisis de Activación de Neutrones/métodos , Oligoelementos/análisis , China , HumanosRESUMEN
The province of Guizhou in Southwestern China is currently one of the world's most important mercury production areas. Emissions of mercury from the province to the global atmosphere have been estimated to be approximately 12% of the world total anthropogenic emissions. The main objective of this study was to assess the level of contamination with Hg in two geographical areas of Guizhou province. Mercury pollution in the areas concerned originates from mercury mining and ore processing in the area of Wanshan, while in the area of Quingzhen mercury pollution originates from the chemical industry discharging Hg through wastewaters and emissions to the atmosphere due to coal burning for electricity production. The results of this study confirmed high contamination with Hg in soil, sediments and rice in the Hg mining area in Wanshan. High levels of Hg in soil and rice were also found in the vicinity of the chemical plant in Quingzhen. The concentrations of Hg decreased with distance from the main sources of pollution considerably. The general conclusion is that Hg contamination in Wanshan is geographically more widespread, due to deposition and scavenging of Hg from contaminated air and deposition on land. In Quingzhen Hg contamination of soil is very high close to the chemical plant but the levels reach background concentrations at a distance of several km. Even though the major source of Hg in both areas is inorganic Hg, it was observed that active transformation of inorganic Hg to organic Hg species (MeHg) takes place in water, sediments and soils. The concentration of Hg in rice grains can reach up to 569 microg/kg of total Hg of which 145 microg/kg was in MeHg form. The percentage of Hg as MeHg varied from 5 to 83%. The concentrations of selenium can reach up to 16 mg/kg in soil and up to 1 mg/g in rice. A correlation exists between the concentration of Se in soil and rice, indicating that a portion of Se is bioavailable to plants. No correlation between Hg and Se in rice was found. Exposure of the local population to Hg may occur due to inhalation of Hg present in air (in particular in Hg mining area) and consumption of Hg contaminated food (in particular rice and fish) and water. Comparison of intake through these different routes showed that the values of Hg considerably exceed the USA EPA Reference Concentration (RfC) for chronic Hg exposure (RfC is 0.0004 mg/m(3)) close to the emission sources. Intake of Hg through food consumption, particularly rice and fish, is also an important route of Hg exposure in study area. In general, it can be concluded that the population mostly at risk is located in the vicinity of smelting facilities, mining activities and close to the waste disposal sites in the wider area of Wanshan. In order to assess the real level of contamination in the local population, it is recommended that biomonitoring should be performed, including Hg and MeHg measurements in hair, blood and urine samples.