Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochemistry ; 40(28): 8227-36, 2001 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-11444968

RESUMEN

4,7-Dioxosebacic acid (4,7-DOSA) is an active site-directed irreversible inhibitor of porphobilinogen synthase (PBGS). PBGS catalyzes the first common step in the biosynthesis of the tetrapyrrole cofactors such as heme, vitamin B(12), and chlorophyll. 4,7-DOSA was designed as an analogue of a proposed reaction intermediate in the physiological PBGS-catalyzed condensation of two molecules of 5-aminolevulinic acid. As shown here, 4,7-DOSA exhibits time-dependent and dramatic species-specific inhibition of PBGS enzymes. IC(50) values vary from 1 microM to 2.4 mM for human, Escherichia coli, Bradyrhizobium japonicum, Pseudomonas aeruginosa, and pea enzymes. Those PBGS utilizing a catalytic Zn(2+) are more sensitive to 4,7-DOSA than those that do not. Weak inhibition of a human mutant PBGS establishes that the inactivation by 4,7-DOSA requires formation of a Schiff base to a lysine that normally forms a Schiff base intermediate to one substrate molecule. A 1.9 A resolution crystal structure of E. coli PBGS complexed with 4,7-DOSA (PDB code ) shows one dimer per asymmetric unit and reveals that the inhibitor forms two Schiff base linkages with each monomer, one to the normal Schiff base-forming Lys-246 and the other to a universally conserved "perturbing" Lys-194 (E. coli numbering). This is the first structure to show inhibitor binding at the second of two substrate-binding sites.


Asunto(s)
Ácidos Decanoicos/química , Inhibidores Enzimáticos/química , Porfobilinógeno Sintasa/antagonistas & inhibidores , Porfobilinógeno Sintasa/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Cationes Bivalentes/química , Cristalización , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Escherichia coli/enzimología , Humanos , Cinética , Magnesio/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Porfobilinógeno Sintasa/genética , Bases de Schiff/química , Especificidad de la Especie , Especificidad por Sustrato/genética , Zinc/química
2.
J Biol Chem ; 276(2): 1531-7, 2001 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-11032836

RESUMEN

Human porphobilinogen synthase (PBGS) is a main target in lead poisoning. Human PBGS purifies with eight Zn(II) per homo-octamer; four ZnA have predominantly nonsulfur ligands, and four ZnB have predominantly sulfur ligands. Only four Zn(II) are required for activity. To better elucidate the roles of Zn(II) and Pb(II), we produced human PBGS mutants that are designed to lack either the ZnA or ZnB sites. These proteins, MinusZnA (H131A, C223A) and MinusZnB (C122A, C124A, C132A), each become purified with four Zn(II) per octamer, thus confirming an asymmetry in the human PBGS structure. MinusZnA is fully active, whereas MinusZnB is far less active, verifying an important catalytic role for ZnB and the removed cysteine residues. Kinetic properties of the mutants and wild type proteins are described. Comparison of Pb(II) inhibition of the mutants shows that ligands to both ZnA and ZnB interact with Pb(II). The ZnB ligands preferentially interact with Pb(II). At least one ZnA ligand is responsible for the slow tight binding behavior of Pb(II). The data support a novel model where a high affinity lead site is a hybrid of the ZnA and ZnB sites. We propose that the lone electron pair of Pb(II) precludes Pb(II) to function in PBGS catalysis.


Asunto(s)
Plomo/farmacología , Porfobilinógeno Sintasa/antagonistas & inhibidores , Porfobilinógeno Sintasa/química , Zinc/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Porfobilinógeno Sintasa/genética , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Eliminación de Secuencia
3.
J Biol Chem ; 276(2): 1538-44, 2001 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-11032841

RESUMEN

Porphobilinogen synthase (PBGS) is a homo-octameric protein that catalyzes the complex asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). The only characterized intermediate in the PBGS-catalyzed reaction is a Schiff base that forms between the first ALA that binds and a conserved lysine, which in Escherichia coli PBGS is Lys-246 and in human PBGS is Lys-252. In this study, E. coli PBGS mutants K246H, K246M, K246W, K246N, and K246G and human PBGS mutant K252G were characterized. Alterations to this lysine result in a disabled but not totally inactive protein suggesting an alternate mechanism in which proximity and orientation are major catalytic devices. (13)C NMR studies of [3,5-(13)C]porphobilinogen bound at the active sites of the E. coli PBGS and the mutants show only minor chemical shift differences, i.e. environmental alterations. Mammalian PBGS is established to have four functional active sites, whereas the crystal structure of E. coli PBGS shows eight spatially distinct and structurally equivalent subunits. Biochemical data for E. coli PBGS have been interpreted to support both four and eight active sites. A unifying hypothesis is that formation of the Schiff base between this lysine and ALA triggers a conformational change that results in asymmetry. Product binding studies with wild-type E. coli PBGS and K246G demonstrate that both bind porphobilinogen at four per octamer although the latter cannot form the Schiff base from substrate. Thus, formation of the lysine to ALA Schiff base is not required to initiate the asymmetry that results in half-site reactivity.


Asunto(s)
Escherichia coli/enzimología , Lisina , Porfobilinógeno Sintasa/química , Porfobilinógeno Sintasa/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Porfobilinógeno/química , Porfobilinógeno/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Biochemistry ; 39(30): 9018-29, 2000 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10913315

RESUMEN

Porphobilinogen synthase (PBGS) is present in all organisms that synthesize tetrapyrroles such as heme, chlorophyll, and vitamin B(12). The homooctameric metalloenzyme catalyzes the condensation of two 5-aminolevulinic acid molecules to form the tetrapyrrole precursor porphobilinogen. An artificial gene encoding PBGS of pea (Pisum sativum L.) was designed to overcome previous problems during bacterial expression caused by suboptimal codon usage and was constructed by recursive polymerase chain reaction from synthetic oligonucleotides. The recombinant 330 residue enzyme without a putative chloroplast transit peptide was expressed in Escherichia coli and purified in 100-mg quantities. The specific activity is protein concentration dependent, which indicates that a maximally active octamer can dissociate into less active smaller units. The enzyme is most active at slightly alkaline pH; it shows two pK(a) values of 7.4 and 9.7. Atomic absorption spectroscopy shows maximal binding of three Mg(II) per subunit; kinetic data support two functionally distinct types of Mg(II) and the third appears to be nonphysiologic and inhibitory. Analysis of the protein concentration dependence of the specific activity suggests that the minimal functional unit is a tetramer. A model of octameric pea PBGS was built to predict the location of intermolecular disulfide linkages that were revealed by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. As verified by site-specific mutagenesis, disulfide linkages can form between four cysteines per octamer, each located five amino acids from the C-terminus. These data are consistent with the protein undergoing conformational changes and the idea that whole-body motion can occur between subunits.


Asunto(s)
Genes Sintéticos , Pisum sativum/enzimología , Proteínas de Plantas/genética , Porfobilinógeno Sintasa/genética , Secuencia de Aminoácidos , Catálisis , Cisteína/genética , Cisteína/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Escherichia coli/genética , Heptanoatos/farmacología , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Magnesio/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pisum sativum/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Porfobilinógeno Sintasa/biosíntesis , Porfobilinógeno Sintasa/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Homología de Secuencia de Aminoácido
5.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 2): 115-28, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10666591

RESUMEN

The porphobilinogen synthase (PBGS) family of enzymes catalyzes the first common step in the biosynthesis of the essential tetrapyrroles such as chlorophyll and porphyrin. Although PBGSs are highly conserved at all four levels of protein structure, there is considerable diversity in the use of divalent cations for the catalytically essential and allosteric roles. Assumptions regarding commonalities among the PBGS proteins coupled with the diversity of usage of metal ions has led to a confused literature. The recent publication of crystal structures for three PBGS proteins coupled with more than 50 individual PBGS sequences allows an evaluation of these assumptions. This topical review focuses on the usage of metals by the PBGS family of proteins. It raises doubt concerning a dogma that there has been an evolutionary shift between Zn(II) and Mg(II) at one or more of the divalent metal-binding sites. It also raises the possibility that there may be up to four specific divalent metal ion-binding sites, each serving a unique function that can be alternatively filled by amino acids in some of the PBGSs.


Asunto(s)
Metaloproteínas/química , Metaloproteínas/metabolismo , Porfobilinógeno Sintasa/química , Porfobilinógeno Sintasa/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
6.
J Biol Chem ; 275(4): 2619-26, 2000 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-10644722

RESUMEN

Porphobilinogen synthase (PBGS) is an ancient enzyme essential to tetrapyrrole biosynthesis (e.g. heme, chlorophyll, and vitamin B(12)). Two common alleles encoding human PBGS, K59 and N59, have been correlated with differential susceptibility of humans to lead poisoning. However, a model for human PBGS based on homologous crystal structures shows the location of the allelic variation to be distant from the active site with its two Zn(II). Previous microbial expression systems for human PBGS have resulted in a poor yield. Here, an artificial gene encoding human PBGS was constructed by recursive polymerase chain reaction from synthetic oligonucleotides to rectify this problem. The artificial gene was made to resemble the highly expressed homologous Escherichia coli hemB gene and to remove rare codons that can confound heterologous protein expression in E. coli. We have expressed and purified recombinant human PBGS variants K59 and N59 in 100-mg quantities. Both human PBGS proteins purified with eight Zn(II)/octamer; Zn(II) binding was shown to be pH-dependent; and Pb(II) could displace some of the Zn(II). However, there was no differential displacement of Zn(II) by Pb(II) between K59 and N59, and simple Pb(II) inhibition studies revealed no allelic difference.


Asunto(s)
Alelos , Genes Sintéticos , Predisposición Genética a la Enfermedad , Variación Genética , Intoxicación por Plomo/genética , Porfobilinógeno Sintasa/genética , Secuencia de Bases , Unión Competitiva , ADN Complementario , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Porfobilinógeno Sintasa/química , Porfobilinógeno Sintasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Ácido Nucleico , Zinc/metabolismo
7.
Biochemistry ; 38(42): 13976-82, 1999 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-10529244

RESUMEN

Porphobilinogen synthases (PBGS) are metalloenzymes that catalyze the first common step in tetrapyrrole biosynthesis. The PBGS enzymes have previously been categorized into four types (I-IV) by the number of Zn(2+) and/or Mg(2+) utilized at three different metal binding sites termed A, B, and C. In this study Pseudomonas aeruginosa PBGS is found to bind only four Mg(2+) per octamer as determined by atomic absorption spectroscopy, in the presence or absence of substrate/product. This is the lowest number of bound metal ions yet found for PBGS where other enzymes bind 8-16 divalent ions. These four Mg(2+) allosterically stimulate a metal ion independent catalytic activity, in a fashion dependent upon both pH and K(+). The allosteric Mg(2+) of PBGS is located in metal binding site C, which is outside the active site. No evidence is found for metal binding to the potential high-affinity active site metal binding sites A and/or B. P. aeruginosa PBGS was investigated using Mn(2+) as an EPR probe for Mg(2+), and the active site was investigated using [3,5-(13)C]porphobilinogen as an NMR probe. The magnetic resonance data exclude the direct involvement of Mg(2+) in substrate binding and product formation. The combined data suggest that P. aeruginosa PBGS represents a new type V enzyme. Type V PBGS has the remarkable ability to synthesize porphobilinogen in a metal ion independent fashion. The total metal ion stoichiometry of only 4 per octamer suggests half-sites reactivity.


Asunto(s)
Metales/metabolismo , Porfobilinógeno Sintasa/metabolismo , Pseudomonas aeruginosa/enzimología , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Isótopos de Carbono , Catálisis , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Magnesio/química , Magnesio/metabolismo , Manganeso/química , Manganeso/metabolismo , Metales/química , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Porfobilinógeno Sintasa/química , Unión Proteica , Espectrofotometría Atómica
8.
Acta Crystallogr D Biol Crystallogr ; 54(Pt 3): 438-40, 1998 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9761921

RESUMEN

Porphobilinogen synthase (PBGS) catalyzes the condensation of two identical substrate molecules, 5-aminolevulinic acid (ALA), in an asymmetric manner to form porphobilinogen. E. coli PBGS is an homooctameric enzyme. The number of active sites is not clear, but each subunit binds one ZnII ion and one MgII ion. Diffraction-quality crystals of native E. coli PBGS have been obtained, and unit-cell dimensions (a = 130.8, c = 144.0 A) are reported. These crystals diffract to about 3.0 A resolution.


Asunto(s)
Escherichia coli/enzimología , Porfobilinógeno Sintasa/química , Cristalización , Peso Molecular , Programas Informáticos , Difracción de Rayos X
9.
Biochemistry ; 36(43): 13421-7, 1997 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-9341235

RESUMEN

Porphobilinogen synthase (PBGS) is a metalloenzyme which catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA) to form porphobilinogen. There are at least four types of PBGS, categorized according to metal ion usage. The PBGS from Bradyrhizobium japonicum requires Mg(II) in catalytic metal site A, has an allosteric Mg(II) in metal site C, and also contains an activating monovalent cation binding site [Petrovich et al. (1996) J. Biol. Chem. 271, 8692-8699]. 13C NMR and Mn(II) EPR have been used to probe the active site and Mg(II) binding sites of this 310 000 dalton protein. The 13C NMR chemical shifts of enzyme-bound product demonstrate that the chemical environment of porphobilinogen bound to B. japonicum PBGS is different from that of PBGS which contains Zn(II) rather than Mg(II) at the active site. Use of Mn(II) in place of Mg(II) broadens the NMR resonances of enzyme-bound porphobilinogen, providing evidence for a direct interaction between MnA and product at the active site. Prior characterization of the enzyme defined conditions in which the divalent cation occupies either the A or the C site. Mimicking these conditions allows Mn(II) EPR observation of either MnC or MnA. The EPR spectrum of MnC is significantly broader and less intense than "free" Mn(II), but relatively featureless. The EPR spectrum of MnA is broader still and more asymmetric than MnC. The EPR data indicate that the coordination spheres of the two metals are different.


Asunto(s)
Magnesio/metabolismo , Manganeso/metabolismo , Porfobilinógeno Sintasa/química , Porfobilinógeno Sintasa/metabolismo , Rhizobiaceae/enzimología , Sitios de Unión/efectos de los fármacos , Radioisótopos de Carbono , Ácido Edético/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética/métodos , Manganeso/farmacología , Porfobilinógeno/química , Porfobilinógeno/metabolismo
10.
J Biol Chem ; 271(15): 8692-9, 1996 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-8621501

RESUMEN

Bradyrhizobium japonicum porphobilinogen synthase (B. japonicum PBGS) has been purified and characterized from an overexpression system in an Escherichia coli host (Chauhan, S., and O'Brian, M. R. (1995) J. Biol. Chem. 270, 19823-19827). B. japonicum PBGS defines a new class of PBGS protein, type IV (classified by metal ion content), which utilizes a catalytic MgA present at a stoichiometry of 4/octamer, an allosteric MgC present at a stoichiometry of 8/octamer, and a monovalent metal ion, K+. However, the divalent MgB or ZnB present in some other PBGS is not present in B. japonicum PBGS. Under optimal conditions, the Kd for MgA is <0.2 microM, and the Kd for MgC is about 40 microM. The response of B. japonicum PBGS activity to monovalent and divalent cations is mutually dependent and varies dramatically with pH. B. japonicum PBGS is also found to undergo a dynamic equilibrium between active multimeric species and inactive monomers under assay conditions, a kinetic characteristic not reported for other PBGSs. B. japonicum PBGS is the first PBGS that has been rigorously demonstrated to lack a catalytic ZnA. However, consistent with prior predictions, B. japonicum PBGS can bind Zn(II) (presumably as ZnA) at a stoichiometry of 4/octamer with a Kd of 200 microM; but this high concentration is outside a physiologically significant range.


Asunto(s)
Porfobilinógeno Sintasa/química , Rhizobiaceae/enzimología , Secuencia de Aminoácidos , Animales , Cationes Monovalentes , Cinética , Magnesio/química , Datos de Secuencia Molecular , Porfobilinógeno Sintasa/genética , Proteínas Recombinantes , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrofotometría Atómica
11.
Acta Crystallogr D Biol Crystallogr ; 52(Pt 2): 419-21, 1996 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15299718

RESUMEN

Bovine porphobilinogen synthase (PBGS) is an homo-octameric enzyme with four active sites. Each active site binds two Zn(II) atoms whose ligands differ and two molecules of 5-aminolevulinate whose chemical fates differ. The asymmetric binding of two Zn(II) atoms and two identical substrate molecules by a homodimeric active site is apparently unique. Modification by 5-chiorolevulinate can be used to differentiate the two substrate-binding sites; diffraction-quality crystals of 5-chlorolevulinate-modified PBGS have been obtained. Pb(II) can be used to differentiate the two different Zn(II)-binding sites; diffraction-quality crystals of the Pb(II) complex of PBGS have been obtained. Preliminary diffraction data reveal an I422 space group, in agreement with a general model for the quaternary structure of PBGS.

12.
J Biol Chem ; 270(41): 24054-9, 1995 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-7592604

RESUMEN

Porphobilinogen synthase (PBGS) is a metalloenzyme that catalyzes the first common step of tetrapyrrole biosynthesis, the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA) to form porphobilinogen. Chemical modification data implicate histidine as a catalytic residue of PBGS from both plants and mammals. Histidine may participate in the abstraction of two non-ionizable protons from each substrate molecule at the active site. Only one histidine is species-invariant among 17 known sequences of PBGS which have high overall sequence similarity. In Escherichia coli PBGS, this histidine is His128. We performed site-directed mutagenesis on His128, replacing it with alanine. The mutant protein H128A is catalytically active. His128 is part of a histidine- and cysteine-rich region of the sequence that is implicated in metal binding. The apparent Kd for Zn(II) binding to H128A is about an order of magnitude higher than for the wild type protein. E. coli PBGS also contains His126 which is conserved through the mammalian, fungal, and some bacterial PBGS. We mutated His126 to alanine, and both His126 and His128 simultaneously to alanine. All mutant proteins are catalytically competent; the Vmax values for H128A (44 units/mg), H126A (75 units/mg), and H126/128A (61 units/mg) were similar to wild type PBGS (50 units/mg) in the presence of saturating concentrations of metal ions. The apparent Kd for Zn(II) of H126A and H126/128A is not appreciably different from wild type. The activity of wild type and mutant proteins are all stimulated by an allosteric Mg(II); the mutant proteins all have a reduced affinity for Mg(II). We observe a pKa of approximately 7.5 in the wild type PBGS kcat/Km pH profile as well as in those of H128A and H126/128A, suggesting that this pKa is not the result of protonation/deprotonation of one of these histidines. H128A and H126/128A have a significantly increased Km value for the substrate ALA. This is consistent with a role for one or both of these histidines as a ligand to the required Zn(II) of E. coli PBGS, which is known to participate in substrate binding. Past chemical modification may have inactivated the PBGS by blocking Zn(II) and ALA binding. In addition, the decreased Km for E. coli PBGS at basic pH allows for the quantitation of active sites at four per octamer.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/genética , Histidina , Filogenia , Porfobilinógeno Sintasa/química , Porfobilinógeno Sintasa/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/enzimología , Secuencia de Bases , Sitios de Unión , Catálisis , Secuencia Conservada , Humanos , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Magnesio/farmacología , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plantas/enzimología , Porfobilinógeno Sintasa/genética , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Termodinámica , Zinc/metabolismo , Zinc/farmacología
13.
J Bioenerg Biomembr ; 27(2): 169-79, 1995 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7592564

RESUMEN

Porphobilinogen is the monopyrrole precursor of all biological tetrapyrroles. The biosynthesis of porphobilinogen involves the asymmetric condensation of two molecules of 5-aminolevulinate and is carried out by the enzyme porphobilinogen synthase (PBGS), also known as 5-aminolevulinate dehydratase. This review documents what is known about the mechanism of the PBGS-catalyzed reaction. The metal ion constituents of PBGS are of particular interest because PBGS is a primary target for the environmental toxin lead. Mammalian PBGS contains two zinc ions at each active site. Bacterial and plant PBGS use a third metal ion, magnesium, as an allosteric activator. In addition, some bacterial and plant PBGS may use magnesium in place of one or both of the zinc ions of mammalian PBGS. These phylogenetic variations in metal ion usage are described along with a proposed rationale for the evolutionary divergence in metal ion usage. Finally, I describe what is known about the structure of PBGS, an enzyme which has as yet eluded crystal structure determination.


Asunto(s)
Hemo/biosíntesis , Porfobilinógeno Sintasa/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Evolución Biológica , Hemo/química , Humanos , Plomo/farmacología , Magnesio/metabolismo , Modelos Químicos , Datos de Secuencia Molecular , Estructura Molecular , Porfobilinógeno Sintasa/química , Porfobilinógeno Sintasa/genética , Bases de Schiff/química , Homología de Secuencia de Aminoácido , Zinc/metabolismo
14.
Biochemistry ; 34(1): 244-51, 1995 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-7819203

RESUMEN

The synthesis of tetrapyrroles is essential to all phyla. Porphobilinogen synthase (PBGS) is a zinc metalloenzyme that catalyzes the formation of porphobilinogen, the monopyrrole precursor of all biological tetrapyrroles. The enzyme from various organisms shows considerable sequence conservation, suggesting a common fold, quaternary structure, and catalytic mechanism. Escherichia coli and plant PBGS are activated by magnesium, a property that is absent from mammalian PBGS. This stimulatory Mg(II) is called Mgc. Mgc is not required for activity and is distinct from the two zinc ions (ZnA and ZnB) common to mammalian and E. coli PBGS (PBGSE.coli). For PBGSE.coli, both the Km for the substrate 5-aminolevulinic acid (ALA) and the Vmax are altered by the presence of Mgc; Mg(II) causes the Km to drop from approximately 3 to 0.30 mM and the maximum specific activity to increase from 23 to 50 mumol h-1 mg-1. Mgc also causes the saturating concentration of the required Zn(II) to decrease from 0.1 mM to 10 microM. Maximal activation by Mg(II) occurs at 0.5 mM; thus, in E. coli the Mgc site is probably saturated under physiological conditions. Mn(II) is a good substitute for Mgc, giving a comparable increase in catalytic activity. Consequently, Mn(II) has been used as an EPR active probe of the Mgc binding site. Mn(II) binds at a stoichiometry of eight ions per enzyme octamer. The X- and Q-band EPR spectra reflect a single type of binding site with rhombic symmetry and are consistent with oxygen and/or nitrogen ligands. The addition of unlabeled or 1-13C-labeled ALA does not significantly affect the Mn(II) EPR spectra.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Escherichia coli/enzimología , Magnesio/fisiología , Porfobilinógeno Sintasa/metabolismo , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/fisiología , Cinética , Manganeso/farmacología , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Zinc/fisiología
15.
Biochemistry ; 33(38): 11554-62, 1994 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-7918369

RESUMEN

5-Chloro[1,4-13C]levulinic acid ([1,4-13C]CLA) is an active site-directed inactivator of porphobilinogen synthase (PBGS). PBGS asymmetrically condenses two molecules of 5-aminolevulinic acid (ALA) which are called A-side ALA and P-side ALA in reference to their fates as the acetyl and propionyl halves of the product. [1,4-13C]CLA modifies bovine PBGS at the A-side ALA binding site. The C4 chemical shift indicates an intact keto moiety; the C1 chemical shift indicates a deprotonated carboxyl group. In contrast, [1,4-13C]CLA modification of Escherichia coli PBGS is heterogeneous and occurs preferentially at the P-side ALA binding site. The C1 chemical shifts indicate substantially deprotonated carboxylic acid groups. For one of four observed forms of [1,4-13C]CLA-modified E. coli PBGS, an analog of the P-site Schiff base is found. Bovine and E. coli PBGS contain two different zincs, ZnA and ZnB. Past results placed ZnA near A-side ALA. [1,4-13C]CLA modifies E. coli PBGS at Cys119 or Cys129, which is part of a four-cysteine cluster implicated in binding ZnB. This result places ZnB near P-side ALA. E. coli PBGS binds a third type of divalent metal, MgC or MnC, which is found to have no significant effect on the 13C NMR spectrum of the [1,4-13C]CLA-modified protein.


Asunto(s)
Ácidos Levulínicos/metabolismo , Metaloproteínas/metabolismo , Porfobilinógeno Sintasa/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Ácido Aminolevulínico/análogos & derivados , Animales , Sitios de Unión , Isótopos de Carbono , Bovinos , Escherichia coli/enzimología , Ácidos Levulínicos/química , Espectroscopía de Resonancia Magnética , Metaloproteínas/química , Modelos Biológicos , Datos de Secuencia Molecular , Porfobilinógeno Sintasa/antagonistas & inhibidores , Porfobilinógeno Sintasa/química , Zinc/química
16.
Biochemistry ; 32(15): 3965-72, 1993 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-8471608

RESUMEN

The chorismate mutase reaction is a rare enzyme-catalyzed 3,3-sigmatropic rearrangement of chorismate to prephenate. Bacillus subtilis chorismate mutase was overproduced and purified from Escherichia coli XL1-Blue (pBSCM2) using a modification of the procedure of Gray et al. (Gray, J. V., Grolinelli-Pimpaneau, B., & Knowles, J. R. (1990) Biochemistry 29, 376-383); the modification leads to minimal contaminating prephenate dehydratase activity (< 0.001%). The native molecular mass of B. subtilis chorismate mutase was determined by gel filtration to be approximately 44 kDa, indicative of a homotrimer of the 14.5-kDa subunits as determined by electrospray mass spectrometry. 13C NMR was used to study the structure of [U-13C]prephenate bound at the active site of B. subtilis chorismate mutase. All the enzyme-bound 13C NMR resonances of [U-13C]prephenate were assigned, and where possible, 1JC,Cs were quantified; [1,3,5,8-13C]prephenate and [2,6,9-13C]prephenate, prepared respectively from [1,3,5,8-13C]chorismate and [2,6,9-13C]chorismate, aided the 13C NMR resonance assignments. Enzyme-bound prephenate exhibits remarkably different chemical shifts relative to free prephenate; the chemical shift changes range from -6.6 ppm for the C6 resonance to 5.6 ppm for the C5 resonance, suggesting a strong perturbation of the C5-C6 bond. 13C NMR studies of model compounds at various pH values and in various solvents suggest that the observed 13C chemical shift changes of enzyme-bound prephenate cannot be rationalized solely on the basis of changes in the pKas of the carboxylic acid groups or hydrophobic solvation at the active site.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Bacillus subtilis/enzimología , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Conformación Proteica , Isótopos de Carbono , Corismato Mutasa/aislamiento & purificación , Ácido Corísmico/metabolismo , Cromatografía DEAE-Celulosa , Cromatografía en Gel , Clonación Molecular , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos , Escherichia coli/genética , Cinética , Espectroscopía de Resonancia Magnética/métodos , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
17.
Protein Sci ; 2(1): 71-9, 1993 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8382991

RESUMEN

The zinc metalloenzyme porphobilinogen synthase (PBGS) contains several functionally important, but previously unidentified, reactive sulfhydryl groups. The enzyme has been modified with the reversible sulfhydryl-specific nitroxide spin label derivative of methyl methanethiosulfonate (MMTS), (1-oxyl-2,2,5,5-tetramethyl-delta 3-pyrroline-3-methyl)methanethiosulfonate (SL-MMTS) (Berliner, L. J., Grunwald, J., Hankovszky, H. O., & Hideg, K., 1982, Anal. Biochem. 119, 450-455). EPR spectra show that SL-MMTS labels three groups per PBGS subunit (24 per octamer), as does MMTS. EPR signals reflecting nitroxides of different mobilities are observed. Two of the three modified cysteines have been identified as Cys-119 and Cys-223 by sequencing peptides produced by an Asp-N protease digest of the modified protein. Because MMTS-reactive thiols have been implicated as ligands to the required Zn(II), EPR spectroscopy has been used to determine the spatial proximity of the modified cysteine residues. A forbidden (delta m = 2) EPR transition is observed indicating a through-space dipolar interaction between at least two of the nitroxides. The relative intensity of the forbidden and allowed transitions show that at least two of the unpaired electrons are within at most 7.6 A of each other. SL-MMTS-modified PBGS loses all Zn(II) and cannot catalyze product formation. The modified enzyme retains the ability to bind one of the two substrates at each active site. Binding of this substrate has no influence on the EPR spectral properties of the spin-labeled enzyme, or on the rate of release of the nitroxides when 2-mercaptoethanol is added.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Porfobilinógeno Sintasa/química , Secuencia de Aminoácidos , Animales , Bovinos , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Metilmetanosulfonato/análogos & derivados , Datos de Secuencia Molecular , Estructura Molecular , Mapeo Peptídico , Marcadores de Spin , Compuestos de Sulfhidrilo/química
18.
Arch Biochem Biophys ; 300(1): 169-77, 1993 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8424649

RESUMEN

Porphobilinogen synthase (PBGS) is essential to all life forms; in mammals it is definitively established that Zn(II) is required for activity. The literature regarding the metal requirement for PBGS in other animals, plants, and bacteria neither establishes nor disproves a Zn(II) requirement. We have characterized Escherichia coli PBGS and found it to be remarkably similar to bovine PBGS. The similarities include a requirement for Zn(II), inhibition by 1,10-phenanthroline, an exceptional thermal stability, a requirement for free sulfhydryl(s) as shown by sensitivity to modification by methyl methanethiosulfonate, and the presence of tightly bound product on freshly isolated enzyme. Proton-induced X-ray emission analysis shows E. coli PBGS to contain a stoichiometric amount of Zn and no other metals. The most striking similarity between E. coli and bovine PBGS is the 13C NMR spectrum of enzyme-bound [3,5-13C]PBG; the chemical shifts of bound product are identical for both bovine and E. coli PBGS. Minor differences between E. coli PBGS and its mammalian counterpart include Km (ALA) = 1.9 mM, a pH optimum of 7.5-8, and its molar absorbtion coefficient expressed as A(0.1%)280 is 0.588. We conclude from these data that E. coli PBGS is a Zn(II)-metalloenzyme and that Zn(II) is required for catalytic activity, and propose that the mammalian and bacterial PBGS function by similar mechanisms. There is one significant difference between E. coli and mammalian PBGS. For E. coli PBGS, Mg(II) causes a twofold stimulation of the Zn(II)-induced E. coli PBGS activity; this effect is not seen for bovine PBGS. The stimulation of activity by Mg(II) mimics the effect of Mg(II) on plant PBGS, although E. coli PBGS does not contain the putative Mg(II) binding site recently revealed by Boese et al. [Q. F. Boese, A. J. Spano, T. Li, and M. P. Timko (1991) J. Biol. Chem. 266, 17060-17066]. This work lays the foundation for identification of functional amino acids based on the sequence similarities between PBGS from bacterial, plant, and mammalian sources.


Asunto(s)
Escherichia coli/enzimología , Magnesio/farmacología , Metaloproteínas/aislamiento & purificación , Metaloproteínas/metabolismo , Porfobilinógeno Sintasa/aislamiento & purificación , Porfobilinógeno Sintasa/metabolismo , Zinc/análisis , Secuencia de Aminoácidos , Animales , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Metaloproteínas/química , Datos de Secuencia Molecular , Fenantrolinas/farmacología , Porfobilinógeno Sintasa/química , Homología de Secuencia de Aminoácido , Zinc/farmacología
19.
Biochemistry ; 31(7): 2113-23, 1992 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-1346974

RESUMEN

Porphobilinogen synthase (PBGS) is a Zn(II) metalloenzyme which catalyzes the asymmetric condensation of two molecules of 5-aminolevulinate (ALA). The nitrogen of the first substrate ends up in the pyrrole ring of product (P-side ALA); by contrast, the nitrogen of the second substrate molecule remains an amino group (A-side ALA). A reactive mimic of the substrate molecules, 5-chlorolevulinate (5-CLA), has been prepared and used as an active site directed irreversible inhibitor of PBGS. Native octameric PBGS binds eight substrate molecules and eight Zn(II) ions, with two types of sites for each ligand. As originally demonstrated by Seehra and Jordan [(1981) Eur. J. Biochem. 113, 435-446], 5-CLA inactivates the enzyme at the site where one of the two substrate molecules binds, and modification at four sites per octamer (one per active site) affords near-total inactivation. Here we report that 5-CLA-modified PBGS (5-CLA-PBGS) can bind up to four substrate molecules and four Zn(II) ions. Contrary to the conclusion of Seehra and Jordan, we find that the preferential site of 5-CLA inactivation is the A-side ALA binding site. On the basis of the dissociation constants, the metal ion binding sites lost upon 5-CLA modification are assigned to the four catalytic Zn(II) sites. 5-CLA-PBGS is shown to be modified at cysteine-223 on half of the subunits. We conclude that cysteine-223 is near the amino group of A-side ALA and propose that this cysteine is a ligand to the catalytic Zn(II). The vacant substrate binding site on 5-CLA-PBGS is that of P-side ALA. We have used 13C and 15N NMR to view [4-13C]ALA and [15N]ALA bound to 5-CLA-PBGS. The NMR results are nearly identical to those obtained previously for the enzyme-bound P-side Schiff base intermediate [Jaffe et al. (1990) Biochemistry 29, 8345-8350]. It appears that, in the absence of the catalytic Zn(II), 5-CLA-PBGS does not catalyze the condensation of the amino group of the P-side Schiff base intermediate with the C4 carbonyl derived from 5-CLA. On this basis we propose that Zn(II) plays an essential role in formation of the first bond between the two substrate molecules.


Asunto(s)
Ácidos Levulínicos/metabolismo , Porfobilinógeno Sintasa/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Bovinos , Hidrólisis , Hígado/enzimología , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Mapeo Peptídico , Porfobilinógeno Sintasa/antagonistas & inhibidores , Somatostatina/metabolismo , Especificidad por Sustrato
20.
Biol Trace Elem Res ; 28(3): 223-31, 1991 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1713045

RESUMEN

A principal target for the environmental toxin lead (Pb) is porphobilinogen synthase (PBGS), a Zn-metalloenzyme necessary for heme biosynthesis. Measurement of blood Pb inhibited PBGS is the most sensitive indicator of subclinical Pb intoxication, but problems with the assay have diminished its use. This report identifies Pb as a slow acting inhibitor of PBGS. The activity of PBGS could change up to sixfold during an hourlong clinical assay of Pb contaminated blood, and activity is profoundly effected by the presence of serum proteins, such as albumin. When PBGS catalyzed PBG production is allowed to reach a steady state rate, kinetic data on purified PBGS support the hypothesis that Pb inhibition of PBGS results from direct substitution for Zn.


Asunto(s)
Intoxicación por Plomo/enzimología , Porfobilinógeno Sintasa/sangre , Animales , Bovinos , Humanos , Técnicas In Vitro , Cinética , Intoxicación por Plomo/sangre , Hígado/enzimología , Porfobilinógeno Sintasa/antagonistas & inhibidores , Albúmina Sérica Bovina , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA