Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Neurol ; 161: 43-54, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265434

RESUMEN

BACKGROUND: Cerebral palsy (CP) is a neurological disorder that impairs motor abilities. Identifying maternal biomarker derangements can facilitate further evaluation for early diagnosis, potentially leading to improved clinical outcomes. This study investigates the association between maternal biomarker derangements and CP development during the antenatal period. METHODS: A systematic search was conducted in MEDLINE, EMBASE, and Cochrane databases, following MOOSE guidelines. Data on participants exceeding biomarker thresholds (95th and 5th percentiles) were extracted for combined odds ratio estimation. Geometric mean differences, reported as multiples of the median (MoMs), were used to analyze changes in marker levels. Trimesterwise subgroup analysis and metaregression assessed the impact of variables on outcomes. RESULTS: Five observational studies (1552 cases, 484,985 controls) revealed lower maternal pregnancy-associated plasma protein A levels were associated with CP (pooled odds ratio [OR] = 1.60, 95% confidence interval [CI] = 1.22 to 2.09; I = 0%), with a -0.04 MoM geometric mean difference. Lower maternal beta-human chorionic gonadotropin (HCG) levels in first and second trimesters indicated a pooled OR = 1.18 (95% CI = 0.85 to 1.63; I = 57%). Sensitivity analysis showed an OR = 1.40 (95% CI = 1.08 to 1.82; I = 0%), with a -0.07 MoM geometric mean difference. Metaregression identified primigravida status as negatively influencing beta-HCG levels. Elevated nuchal translucency values and CP presented a pooled OR = 1.06 (95% CI = 0.77 to 1.44; I = 0%). CONCLUSION: Lower maternal pregnancy-associated plasma protein A levels during the first trimester and lower beta-HCG levels in the first and second trimesters are associated with CP development in children. Future research should validate the predictive utility of these biomarkers and explore novel ones through large-scale cohort studies.

2.
Autophagy ; : 1-13, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39265628

RESUMEN

Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials. However, the role of PPT1 in tumorigenesis remains poorly understood. Here we report that in melanoma cells, acute siRNA or pharmacological PPT1 inhibition led to increased ferroptosis sensitivity and significant loss of viability, whereas chronic PPT1 knockout using CRISPR-Cas9 produced blunted ferroptosis that led to sustained viability and growth. Each mode of PPT1 inhibition produced lysosome-autophagy inhibition but distinct proteomic changes, demonstrating the complexity of cellular adaptation mechanisms. To determine whether total genetic loss of Ppt1 would affect tumorigenesis in vivo, we developed a Ppt1 conditional knockout mouse model. We then crossed it into the BrafCA, PtenloxP, Tyr:CreERT2 melanoma mouse model to investigate the impact of Ppt1 loss on tumorigenesis. Loss of Ppt1 had no impact on melanoma histology, time to tumor initiation, or survival of tumor-bearing mice. These results suggest that chemical PPT1 inhibitors produce different adaptations than genetic PPT1 inhibition, and additional studies are warranted to fully understand the mechanism of chloroquine derivatives that target PPT1 in cancer.Abbreviations: 4-HT: 4-hydroxytamoxifen; BRAF: B-Raf proto-oncogene, serine/threonine kinase; cKO: conditional knockout; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9; DC661: A specific PPT1 inhibitor; DMSO: dimethyl sulfoxide; Dox; doxycycline hyclate; Easi-CRISPR: efficient additions with ssDNA inserts-CRISPR; GNS561/ezurpimtrostat: A PPT1 inhibitor; Hug: human guide; iCas: inducible CRISPR-Cas9; KO: knockout; LC-MS/MS: Liquid chromatography-tandem mass spectrometry; LDLR: low density lipoprotein receptor; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NT: non-target; PTEN: phosphatase and tensin homolog; PPT1: palmitoyl-protein thioesterase 1; RSL3: RAS-selective lethal small molecule 3; SCRIB/SCRB1: scribble planar cell polarity protein; Tyr:CreERT2: tyrosinase-driven Cre recombinase fused with the tamoxifen-inducible mutant ligand binding domain of the human estrogen receptor; UGCG: UDP-glucose ceramide glucosyltransferase; WT: wild-type.

3.
J Clin Invest ; 134(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225100

RESUMEN

Sarcoidosis is a multiorgan granulomatous disease that lacks diagnostic biomarkers and targeted treatments. Using blood and skin from patients with sarcoid and non-sarcoid skin granulomas, we discovered that skin granulomas from different diseases exhibit unique immune cell recruitment and molecular signatures. Sarcoid skin granulomas were specifically enriched for type 1 innate lymphoid cells (ILC1s) and B cells and exhibited molecular programs associated with formation of mature tertiary lymphoid structures (TLSs), including increased CXCL12/CXCR4 signaling. Lung sarcoidosis granulomas also displayed similar immune cell recruitment. Thus, granuloma formation was not a generic molecular response. In addition to tissue-specific effects, patients with sarcoidosis exhibited an 8-fold increase in circulating ILC1s, which correlated with treatment status. Multiple immune cell types induced CXCL12/CXCR4 signaling in sarcoidosis, including Th1 T cells, macrophages, and ILCs. Mechanistically, CXCR4 inhibition reduced sarcoidosis-activated immune cell migration, and targeting CXCR4 or total ILCs attenuated granuloma formation in a noninfectious mouse model. Taken together, our results show that ILC1s are a tissue and circulating biomarker that distinguishes sarcoidosis from other skin granulomatous diseases. Repurposing existing CXCR4 inhibitors may offer a new targeted treatment for this devastating disease.


Asunto(s)
Granuloma , Inmunidad Innata , Receptores CXCR4 , Sarcoidosis , Receptores CXCR4/inmunología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Animales , Humanos , Ratones , Sarcoidosis/inmunología , Sarcoidosis/patología , Granuloma/inmunología , Granuloma/patología , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/patología , Femenino , Quimiocina CXCL12/inmunología , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Linfocitos/inmunología , Linfocitos/patología , Masculino , Piel/inmunología , Piel/patología , Transducción de Señal/inmunología
4.
Genome Med ; 16(1): 95, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095897

RESUMEN

BACKGROUND: Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS: A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS: First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS: Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.


Asunto(s)
Encéfalo , Accidente Cerebrovascular Isquémico , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Femenino , Masculino , Ratones , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Análisis de la Célula Individual , Infarto de la Arteria Cerebral Media/patología , Ratones Endogámicos C57BL
5.
Cancers (Basel) ; 16(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39001556

RESUMEN

The Cancers Editorial Office retracts the article entitled 'Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia' [...].

6.
Clin Nucl Med ; 49(9): 882-883, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38973086

RESUMEN

ABSTRACT: Prostate-specific membrane antigen (PSMA) PET/CT has become an unparalleled modality in the diagnosis of primary and recurrent prostatic adenocarcinoma, often revealing sites of disease that were previously invisible on conventional imaging. In this 78-year-old man with suspected prostate cancer recurrence, PSMA PET/CT revealed focal radiotracer uptake in the brain, which would ordinarily raise suspicion for metastases, but was a false positive in the setting of a recent stroke. Increased PSMA uptake has been reported in subacute infarcts and primary and secondary brain tumors. Careful history and comparison with prior imaging are vital to avoid false-positive diagnosis in such patients.


Asunto(s)
Infarto Cerebral , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Masculino , Anciano , Infarto Cerebral/diagnóstico por imagen , Trazadores Radiactivos , Transporte Biológico , Neoplasias de la Próstata/diagnóstico por imagen , Tomografía Computarizada por Rayos X
8.
J Invest Dermatol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796140

RESUMEN

UBE2N, a Lys63 ubiquitin-conjugating enzyme, plays critical roles in embryogenesis and immune system development and function. However, its roles in adult epithelial tissue homeostasis and pathogenesis are unclear. We generated conditional mouse models that deleted Ube2n in skin cells in a temporally and spatially controlled manner. We found that Ube2n knockout in the adult skin keratinocytes induced a range of inflammatory skin defects characteristic of psoriatic and actinic keratosis. These included inflammation, epidermal and dermal thickening, parakeratosis, and increased immune cell infiltration as well as signs of edema and blistering. Single-cell transcriptomic analyses and RT-qPCR showed that Ube2n-knockout keratinocytes expressed elevated myeloid cell chemoattractants such as Cxcl1 and Cxcl2 and decreased the homeostatic T lymphocyte chemoattractant Ccl27a. Consistently, the infiltrating immune cells were predominantly myeloid-derived cells, including neutrophils and M1-like macrophages, which expressed high levels of inflammatory cytokines such as Il1ß and Il24. Pharmacological blockade of the IL-1 receptor associated kinases (IRAK1/4) alleviated inflammation, epidermal and dermal thickening, and immune infiltration of the Ube2n-mutant skin. Together, these findings highlight a key role of keratinocyte UBE2N in maintenance of epidermal homeostasis and skin immunity and identify IRAK1/4 as potential therapeutic target for inflammatory skin disorders.

9.
Sci Adv ; 10(17): eadj6814, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669329

RESUMEN

We aimed to identify serum biomarkers that predict knee osteoarthritis (OA) before the appearance of radiographic abnormalities in a cohort of 200 women. As few as six serum peptides, corresponding to six proteins, reached AUC 77% probability to distinguish those who developed OA from age-matched individuals who did not develop OA up to 8 years later. Prediction based on these blood biomarkers was superior to traditional prediction based on age and BMI (AUC 51%) or knee pain (AUC 57%). These results identify a prolonged molecular derangement of joint tissue before the onset of radiographic OA abnormalities consistent with an unresolved acute phase response. Among all 24 protein biomarkers predicting incident knee OA, the majority (58%) also predicted knee OA progression, revealing the existence of a pathophysiological "OA continuum" based on considerable similarity in the molecular pathophysiology of the progression to incident OA and the progression of established OA.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Osteoartritis de la Rodilla , Humanos , Biomarcadores/sangre , Femenino , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/fisiopatología , Persona de Mediana Edad , Anciano
10.
Acta Neuropathol Commun ; 12(1): 64, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650010

RESUMEN

Glioblastoma (GBM) remains an untreatable malignant tumor with poor patient outcomes, characterized by palisading necrosis and microvascular proliferation. While single-cell technology made it possible to characterize different lineage of glioma cells into neural progenitor-like (NPC-like), oligodendrocyte-progenitor-like (OPC-like), astrocyte-like (AC-like) and mesenchymal like (MES-like) states, it does not capture the spatial localization of these tumor cell states. Spatial transcriptomics empowers the study of the spatial organization of different cell types and tumor cell states and allows for the selection of regions of interest to investigate region-specific and cell-type-specific pathways. Here, we obtained paired 10x Chromium single-nuclei RNA-sequencing (snRNA-seq) and 10x Visium spatial transcriptomics data from three GBM patients to interrogate the GBM microenvironment. Integration of the snRNA-seq and spatial transcriptomics data reveals patterns of segregation of tumor cell states. For instance, OPC-like tumor and NPC-like tumor significantly segregate in two of the three samples. Our differentially expressed gene and pathway analyses uncovered significant pathways in functionally relevant niches. Specifically, perinecrotic regions were more immunosuppressive than the endogenous GBM microenvironment, and perivascular regions were more pro-inflammatory. Our gradient analysis suggests that OPC-like tumor cells tend to reside in areas closer to the tumor vasculature compared to tumor necrosis, which may reflect increased oxygen requirements for OPC-like cells. In summary, we characterized the localization of cell types and tumor cell states, the gene expression patterns, and pathways in different niches within the GBM microenvironment. Our results provide further evidence of the segregation of tumor cell states and highlight the immunosuppressive nature of the necrotic and perinecrotic niches in GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Transcriptoma , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
11.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617347

RESUMEN

Therapeutic resistance to immune checkpoint blockade has been commonly linked to the process of mesenchymal transformation (MT) and remains a prevalent obstacle across many cancer types. An improved mechanistic understanding for MT-mediated immune evasion promises to lead to more effective combination therapeutic regimens. Herein, we identify the Hedgehog transcription factor, Gli2, as a key node of tumor-mediated immune evasion and immunotherapy resistance during MT. Mechanistic studies reveal that Gli2 generates an immunotolerant tumor microenvironment through the upregulation of Wnt ligand production and increased prostaglandin synthesis. This pathway drives the recruitment, viability, and function of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) while also impairing type I conventional dendritic cell, CD8 + T cell, and NK cell functionality. Pharmacologic EP2/EP4 prostaglandin receptor inhibition and Wnt ligand inhibition each reverses a subset of these effects, while preventing primary and adaptive resistance to anti-PD-1 immunotherapy, respectively. A transcriptional Gli2 signature correlates with resistance to anti-PD-1 immunotherapy in stage IV melanoma patients, providing a translational roadmap to direct combination immunotherapeutics in the clinic. SIGNIFICANCE: Gli2-induced EMT promotes immune evasion and immunotherapeutic resistance via coordinated prostaglandin and Wnt signaling.

12.
Cell Stem Cell ; 31(4): 467-483.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38537631

RESUMEN

Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.


Asunto(s)
Lesiones Encefálicas , Perforación Intestinal , Trastornos Motores , Nacimiento Prematuro , Lactante , Femenino , Recién Nacido , Humanos , Animales , Ratones , Recien Nacido Prematuro , Perforación Intestinal/complicaciones , Ventrículos Laterales , Nicho de Células Madre , Trastornos Motores/complicaciones , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/diagnóstico por imagen
13.
J Clin Invest ; 134(6)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319732

RESUMEN

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Ratones , Animales , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinasas/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Serina-Treonina Quinasas TOR/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Glucosa , Metformina/farmacología , Microambiente Tumoral
14.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38105982

RESUMEN

UBE2N, a Lys63-ubiquitin conjugating enzyme, plays critical roles in embryogenesis and immune system development and function. However, its roles in adult epithelial tissue homeostasis and pathogenesis are unclear. We generated conditional mouse models that deleted Ube2n in skin cells in a temporally and spatially controlled manner. We found that Ube2n-knockout (KO) in the adult skin keratinocytes induced a range of inflammatory skin defects characteristic of psoriatic and actinic keratosis. These included eczematous inflammation, epidermal and dermal thickening, parakeratosis, and increased immune cell infiltration, as well as signs of edema and blistering. Single cell transcriptomic analyses and RT-qPCR showed that Ube2n KO keratinocytes expressed elevated myeloid cell chemo-attractants such as Cxcl1 and Cxcl2 and decreased the homeostatic T lymphocyte chemo-attractant, Ccl27a. Consistently, the infiltrating immune cells of Ube2n-KO skin were predominantly myeloid-derived cells including neutrophils and M1-like macrophages that were highly inflammatory, as indicated by expression of Il1ß and Il24. Pharmacological blockade of the IL-1 receptor associated kinases (IRAK1/4) alleviated eczema, epidermal and dermal thickening, and immune infiltration of the Ube2n mutant skin. Together, these findings highlight a key role of keratinocyte-UBE2N in maintenance of epidermal homeostasis and skin immunity and identify IRAK1/4 as potential therapeutic target for inflammatory skin disorders.

15.
Clin Immunol ; 257: 109812, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37866785

RESUMEN

Synovial fluid (SF) extracellular vesicles (EVs) play a pathogenic role in osteoarthritis (OA). However, the surface markers, cell and tissue origins, and effectors of these EVs are largely unknown. We found that SF EVs contained 692 peptides that were positively associated with knee radiographic OA severity; 57.4% of these pathogenic peptides were from 46 proteins of the immune system, predominantly the innate immune system. CSPG4, BGN, NRP1, and CD109 are the major surface markers of pathogenic SF EVs. Genes encoding surface marker CSPG4 and CD109 were highly expressed by chondrocytes from damaged cartilage, while VISG4, MARCO, CD163 and NRP1 were enriched in the synovial immune cells. The frequency of CSPG4+ and VSIG4+ EV subpopulations in OA SF was high. We conclude that pathogenic SF EVs carry knee OA severity-associated proteins and specific surface markers, which could be developed as a new source of diagnostic biomarkers or therapeutic targets in OA.


Asunto(s)
Vesículas Extracelulares , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/metabolismo , Líquido Sinovial/metabolismo , Biomarcadores/metabolismo , Péptidos/metabolismo , Vesículas Extracelulares/metabolismo
16.
Stud Health Technol Inform ; 309: 267-271, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37869855

RESUMEN

Autism Spectrum Disorder (ASD) is a highly heterogeneous condition, due to high variance in its etiology, comorbidity, pathogenesis, severity, genetics, and brain functional connectivity (FC). This makes it devoid of any robust universal biomarker. This study aims to analyze the role of age and multivariate patterns in brain FC and their accountability in diagnosing ASD by deep learning algorithms. We utilized functional magnetic resonance imaging data of three age groups (6 to 11, 11 to 18, and 6 to 18 years), available with public databases ABIDE-I and ABIDE-II, to discriminate between ASD and typically developing. The blood-oxygen-level dependent time series were extracted using the Gordon's, Harvard Oxford and Diedrichsen's atlases, over 236 regions of interest, as 236x236 sized FC matrices for each participant, with Pearson correlations. The feature sets, in the form of FC heat maps were computed with respect to each age group and were fed to a convolutional neural network, such as MobileNetV2 and DenseNet201 to build age-specific diagnostic models. The results revealed that DenseNet201 was able to adapt and extract better features from the heat maps, and hence returned better accuracy scores. The age-specific dataset, with participants of ages 6 to 11 years, performed best, followed by 11 to 18 years and 6 to 18 years, with accuracy scores of 72.19%, 71.88%, and 69.74% respectively, when tested using the DenseNet201. Our results suggest that age-specific diagnostic models are able to counter heterogeneity present in ASD, and that enables better discrimination.


Asunto(s)
Trastorno del Espectro Autista , Aprendizaje Profundo , Humanos , Niño , Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Factores de Edad
17.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37904990

RESUMEN

Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.

18.
Bioeng Transl Med ; 8(5): e10551, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693052

RESUMEN

A promising strategy to cure HIV-infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs. For this reason, understanding the mechanism(s) of reactivation of HIV within cellular reservoirs is critical to achieve therapeutic success. Methodologies enabling temporal tracking of single cells as they reactivate followed by sorting and molecular analysis of those cells are urgently needed. To this end, microraft arrays were adapted to image T-lymphocytes expressing mCherry under the control of the HIV long terminal repeat (LTR) promoter, in response to the application of LRAs (prostratin, iBET151, and SAHA). In response to prostratin, iBET151, and SAHA, 30.5%, 11.2%, and 12.1% percentage of cells, respectively. The arrays enabled large numbers of single cells (>25,000) to be imaged over time. mCherry fluorescence quantification identified cell subpopulations with differing reactivation kinetics. Significant heterogeneity was observed at the single-cell level between different LRAs in terms of time to reactivation, rate of mCherry fluorescence increase upon reactivation, and peak fluorescence attained. In response to prostratin, subpopulations of T lymphocytes with slow and fast reactivation kinetics were identified. Single T-lymphocytes that were either fast or slow reactivators were sorted, and single-cell RNA-sequencing was performed. Different genes associated with inflammation, immune activation, and cellular and viral transcription factors were found.

19.
Cell Stem Cell ; 30(8): 1054-1071.e8, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541211

RESUMEN

White matter injuries (WMIs) are the leading cause of neurologic impairment in infants born premature. There are no treatment options available. The most common forms of WMIs in infants occur prior to the onset of normal myelination, making its pathophysiology distinctive, thus requiring a tailored approach to treatment. Neonates present a unique opportunity to repair WMIs due to a transient abundance of neural stem/progenitor cells (NSPCs) present in the germinal matrix with oligodendrogenic potential. We identified an endogenous oxysterol, 20-αHydroxycholesterol (20HC), in human maternal breast milk that induces oligodendrogenesis through a sonic hedgehog (shh), Gli-dependent mechanism. Following WMI in neonatal mice, injection of 20HC induced subventricular zone-derived oligodendrogenesis and improved myelination in the periventricular white matter, resulting in improved motor outcomes. Targeting the oligodendrogenic potential of postnatal NSPCs in neonates with WMIs may be further developed into a novel approach to mitigate this devastating complication of preterm birth.


Asunto(s)
Lesiones Encefálicas , Nacimiento Prematuro , Sustancia Blanca , Femenino , Humanos , Animales , Ratones , Recién Nacido , Sustancia Blanca/metabolismo , Leche Humana/metabolismo , Proteínas Hedgehog/metabolismo , Ventrículos Cerebrales/metabolismo , Oligodendroglía/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA