Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38909155

RESUMEN

BACKGROUND: Low socioeconomic status (SES) residents living in social housing, which is subsidized by government or government-funded agencies, may have higher exposures to pesticides used in indoor residences since pesticides are applied due to structural deficiencies, poor maintenance, etc. OBJECTIVE: To estimate exposure of residents in low-SES social housing built in the 1970s to legacy and current-use pesticides and to investigate factors related to exposures. METHODS: Twenty-eight particle-phase pesticides were measured in the indoor air of 46 units in seven low-income social housing, multi-unit residential buildings (MURBs) in Toronto, Canada using portable air cleaners deployed for 1 week in 2017. Pesticides analyzed were legacy and current use in the classes: organochlorines, organophosphates, pyrethroids, and strobilurins. RESULTS: At least one pesticide was detected in 89% of the units with detection frequencies (DF) for individual pesticides of up to 50%, including legacy organochlorines and current-use pesticides. Current-use pyrethroids had the highest DF and concentrations, with the highest particle-phase concentration for pyrethrin I at 32,000 pg/m3. Heptachlor, restricted for use in Canada in 1985, had the highest estimated maximum total air (particle plus gas phase) concentration of 443,000 pg/m3. Heptachlor, lindane, endosulfan I, chlorothalonil, allethrin, and permethrin (except in one study) had higher concentrations than those measured in low-income residences reported elsewhere. In addition to the intentional use of pesticides to control pests and their use in building materials and paints, tobacco smoking was significantly correlated with the concentrations of five pesticides used on tobacco crops. The distribution of pesticides with high DF in individual buildings suggested that pest eradication programs by the building management and/or pesticide use by residents were the major sources of measured pesticides. IMPACT: Low-income social housing fills a much-needed demand, but the residences are prone to pest infestation and hence pesticide use. We found exposure to at least 1 of 28 particle-phase pesticides in 89% of all 46 units tested, with the highest DF and concentrations for current-use pyrethroids and long-banned organochlorines (e.g., DDT, heptachlor) due to very high persistence indoors. Also measured were several pesticides not registered for use indoors, e.g., strobilurins used to treat building materials and pesticides used on tobacco crops. These results, which are the first Canadian data for most pesticides indoors, show widespread exposure to numerous pesticides.

2.
J Am Soc Mass Spectrom ; 35(2): 275-284, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38239096

RESUMEN

Humans are exposed to differing levels of micro/nanoplastics (MNPs) through inhalation, but few studies have attempted to measure <1 µm MNPs in air, in part due to a paucity of analytical methods. We developed an approach to identify and quantify MNPs in indoor air using a novel pyrolysis gas chromatographic cyclic ion mobility mass spectrometer (pyr-GCxcIMS). Four common plastic types were targeted for identification, namely, (polystyrene (PS), polyethylene (PE), polypropylene (PP), and polymethyl methacrylate (PMMA). The method was applied to size-resolved particulate (56 nm to 18 µm) collected from two different indoor environments using a Micro-Orifice Uniform Deposit Impactors (MOUDI) model 110 cascade impactor. Comprehensive two-dimensional separation by GCxcIMS also enabled the retrospective analysis of other polymers and plastic additives. The mean concentrations of MNP particles with diameters of <10 µm and <2.5 µm in the laboratory were estimated to be 47 ± 5 and 27 ± 4 µg/m3, respectively. In the private residence, the estimated concentrations were 24 ± 3 and 16 ± 2 µg/m3. PS was the most abundant MNP type in both locations. Nontargeted screening revealed the presence of plastic additives, such as TDCPP (tris(1,3-dichloro-2-propyl)phosphate) whose abundance correlated with that of polyurethane (PU). This is consistent with their use as flame retardants in PU-based upholstered furniture and building insulation. This study provides evidence of indoor exposure to MNPs and underlines the need for further study of this route of exposure to MNPs and the plastic additives carried with them.

3.
Arch Environ Contam Toxicol ; 86(1): 37-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063884

RESUMEN

The areal distributions of the soil organochlorine pesticide (OCP) levels were investigated at adjacent and surrounding sites of the obsolete pesticide stockpile warehouse in Kocaeli, Türkiye. OCP levels in soil at neighboring sampling locations (positioned at 0.4 to 3 km from the stockpile) varied from 0.4 to 9 µg/kg and 4.2 to 2226 µg/kg (dry weight) for ΣHCHs and ΣDDXs, respectively. Levels at adjacent locations (positioned within 20 m from the stockpile) were considerably higher, varying from 74 to 39,619 µg/kg and 1592 to 30,419 µg/kg for ΣHCHs and ΣDDXs, respectively. Levels of OCPs dropped abruptly with the horizontal distance from the stockpile and had different transect profiles. The enantiomer fractions (EFs) near the stockpile range from 0.494 to 0.521, 0.454 to 0.515, and 0.483 to 0.533 for α-HCH, o,p'-DDT, and o,p'-DDD, respectively. These near-racemic EFs suggested that observed soil OCP levels were mainly influenced by recent emissions from the stockpile. A comparison of OCP compositions observed in the soil at the present study with the technical HCHs and DDTs revealed that the material in the stockpile primarily contains byproducts that were discarded during DDT and Lindane production at the adjacent plant instead of their technical mixtures.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Contaminantes del Suelo , Plaguicidas/análisis , Turquía , Suelo , Monitoreo del Ambiente , DDT/análisis , Hidrocarburos Clorados/análisis , Contaminantes del Suelo/análisis , Mitotano , China
4.
Environ Res ; 240(Pt 1): 117451, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871788

RESUMEN

Organophosphate ester flame retardants and plasticizers (OPEs) are common exposures in modern built environments. Toxicological models report that some OPEs reduce dopamine and serotonin in the brain. Deficiencies in these neurotransmitters are associated with anxiety and depression. We hypothesized that exposure to higher concentrations of OPEs in house dust would be associated with a greater risk of depression and stress in mothers across the prenatal and postpartum periods. We conducted a nested prospective cohort study using data collected on mothers (n = 718) in the CHILD Cohort Study, a longitudinal multi-city Canadian birth cohort (2008-2012). OPEs were measured in house dust sampled at 3-4 months postpartum. Maternal depression and stress were measured at 18 and 36 weeks gestation and 6 months and 1 year postpartum using the Centre for Epidemiologic Studies for Depression Scale (CES-D) and Perceived Stress Scale (PSS). We used linear mixed models to examine the association between a summed Z-Score OPE index and continuous depression and stress scores. In adjusted models, one standard deviation increase in the OPE Z-score index was associated with a 0.07-point (95% CI: 0.01, 0.13) increase in PSS score. OPEs were not associated with log-transformed CES-D (ß: 0.63%, 95% CI: -0.18%, 1.46%). The effect of OPEs on PSS score was strongest at 36 weeks gestation and weakest at 1 year postpartum. We observed small increases in maternal perceived stress levels, but not depression, with increasing OPEs measured in house dust during the prenatal and early postpartum period in this cohort of Canadian women. Given the prevalence of prenatal and postpartum anxiety and the ubiquity of OPE exposures, additional research is warranted to understand if these chemicals affect maternal mental health.


Asunto(s)
Retardadores de Llama , Embarazo , Humanos , Femenino , Retardadores de Llama/toxicidad , Plastificantes/toxicidad , Estudios de Cohortes , Estudios Prospectivos , Polvo , Canadá/epidemiología , Ésteres , Organofosfatos/toxicidad , Evaluación de Resultado en la Atención de Salud
5.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294896

RESUMEN

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análisis , Monitoreo del Ambiente/métodos , Hexaclorobenceno/análisis , Agua Dulce , Contaminantes Atmosféricos/análisis , Plaguicidas/análisis , Hidrocarburos Clorados/análisis
6.
Environ Sci Technol ; 55(18): 12302-12316, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34459590

RESUMEN

Accurate values of physicochemical properties are essential for screening semivolatile organic compounds for human and environmental hazard and risk. In silico approaches for estimation are widely used, but the accuracy of these and measured values can be difficult to ascertain. Final adjusted values (FAVs) harmonize literature-reported measurements to ensure consistency and minimize uncertainty. We propose a workflow, including a novel Bayesian approach, for estimating FAVs that combines measurements using direct and indirect methods and in silico values. The workflow was applied to 74 compounds across nine classes to generate recommended FAVs (FAVRs). Estimates generated by in silico methods (OPERA, COSMOtherm, EPI Suite, SPARC, and polyparameter linear free energy relationships (pp-LFER) models) differed by orders of magnitude for some properties and compounds and performed systematically worse for larger, more polar compounds. COSMOtherm and OPERA generally performed well with low bias although no single in silico method performed best across all compound classes and properties. Indirect measurement methods produced highly accurate and precise estimates compared with direct measurement methods. Our Bayesian method harmonized measured and in silico estimated physicochemical properties without introducing observable biases. We thus recommend use of the FAVRs presented here and that the proposed Bayesian workflow be used to generate FAVRs for SVOCs beyond those in this study.


Asunto(s)
Monitoreo del Ambiente , Compuestos Orgánicos , Teorema de Bayes , Humanos
7.
Sci Total Environ ; 784: 147155, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34088044

RESUMEN

We report the first Canadian Arctic-wide study of anthropogenic particles (APs, >125 µm), including microfibers (synthetic, semi-synthetic and anthropogenically modified cellulose) and microplastics, in marine sediments from 14 sites. Samples from across the Canadian Arctic were collected between 2014 and 2017 from onboard the CCGS Amundsen. Samples were processed using density separation with calcium chloride (CaCl2). APs >125 µm were identified and a subset (22%) were characterized using Raman spectroscopy. Following blank-correction, microfiber numbers were corrected using Raman data in a novel approach to subtract possible "natural" cellulose microfibers with no anthropogenic signal via Raman spectroscopy, to estimate the proportion of cellulose microfibers that are of confirmed anthropogenic origin. Of all microfibers examined by Raman spectroscopy, 51% were anthropogenic cellulose, 11% were synthetic polymers, and 7% were extruded fibers emitting a dye signal. The remaining 31% of microfibers were identified as cellulosic but could not be confirmed as anthropogenic and thus were excluded from the final concentrations. Concentrations of confirmed APs in sediments ranged from 0.6 to 4.7 particles g-1 dry weight (dw). Microfibers comprised 82% of all APs, followed by fragments at 15%. Total microfiber concentrations ranged from 0.4 to 3.2 microfibers g-1 dw, while microplastic (fragments, foams, films and spheres) concentrations ranged from 0 to 1.6 microplastics g-1 dw. These concentrations may exceed those recorded in urban areas near point sources of plastic pollution, and indicate that the Canadian Arctic is a sink for APs, including anthropogenic cellulose fibers. Overall, we provide an important benchmark of AP contamination in Canadian Arctic marine sediments against which to measure temporal trends, including the effects of source reduction strategies and climate change, both of which will likely alter patterns of accumulation of anthropogenic particles.

8.
Environ Sci Technol ; 55(14): 9518-9526, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33826304

RESUMEN

The time trend of α- and γ-hexachlorocyclohexane (HCH) isomers in Lake Superior water was followed from 1986 to 2016, the longest record for any persistent organic pollutant (POP) in Great Lakes water. Dissipation of α-HCH and γ-HCHs was first order, with halving times (t1/2) of 5.7 and 8.5 y, respectively. Loss rates were not significantly different starting a decade later (1996-2016). Concentrations of ß-HCH were followed from 1996-2016 and dissipated more slowly (t1/2 = 16 y). In 1986, the lake contained an estimated 98.8 tonnes of α-HCH and 13.2 tonnes of γ-HCH; by 2016, only 2.7% and 7.9% of 1986 quantities remained. Halving times of both isomers in water were longer than those reported in air, and for γ-HCH, they were longer in water than those reported in lake trout. Microbial degradation was evident by enantioselective depletion of (+)α-HCH, which increased from 1996 to 2011. Volatilization was the main removal process for both isomers, followed by degradation (hydrolytic and microbial) and outflow through the St. Mary's River. Sedimentation was minor. Major uncertainties in quantifying removal processes were in the two-film model for predicting volatilization and in microbial degradation rates. The study highlights the value of long-term monitoring of chemicals in water to interpreting removal processes and trends in biota.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Hexaclorociclohexano/análisis , Lagos , Plaguicidas/análisis , Agua , Contaminantes Químicos del Agua/análisis
9.
Environ Res ; 197: 110981, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33691158

RESUMEN

BACKGROUND: Studies have demonstrated an association between phthalate exposure and childhood asthma, although results have been inconsistent. No epidemiological studies have examined exposure during the first year of life. OBJECTIVE: To investigate the association between phthalate exposures in the home environment during the first year of life, and subsequent development of childhood asthma and related symptoms. METHODS: This study used a case-cohort design including 436 randomly selected children and all additional cases of asthma at 5 years (ntotal = 129) and recurrent wheeze between 2 and 5 years (ntotal = 332) within the CHILD Cohort Study, a general population Canadian birth cohort of 3455 children. Phthalate exposure was assessed using house dust samples collected during a standardized home visit when children were 3-4 months of age. All children were assessed by specialist clinicians for asthma and allergy at 1, 3 and 5 years. Logistic regression was used to assess the association between exposure to five phthalates and asthma diagnosis at 5 years, and recurrent wheeze between 2 and 5 years, with further stratification by wheeze subtypes (late onset, persistent, transient) based on the timing of onset and persistence of wheeze symptoms. RESULTS: Di(2-ethylhexyl) phthalate (DEHP) had the highest concentration in dust (mediansubcohort = 217 µg/g), followed by benzyl butyl phthalate (BzBP) (20 µg/g). A nearly four-fold increase in risk of developing asthma was associated with the highest concentration quartile of DEHP (OR = 3.92, 95% CI: 1.87-8.24) including a positive dose-response relationship. A two-fold increase in risk of recurrent wheeze was observed across all quartiles compared to the lowest quartile of DEHP concentrations. Compared to other wheeze subtypes, stronger associations for DEHP were observed with the late onset wheezing subtype, while stronger associations for di-iso-butyl phthalate (DiBP) and BzBP were observed with the transient subtype. DISCUSSION: DEHP exposure at 3-4 months, at concentrations lower than other studies that reported an association, were associated with increased risks of asthma and recurrent wheeze among children at 5 years. These findings suggest the need to assess whether more stringent regulations are required to protect children's health, which can be informed by future work exploring the main sources of DEHP exposure.


Asunto(s)
Asma , Ácidos Ftálicos , Asma/inducido químicamente , Asma/epidemiología , Canadá/epidemiología , Niño , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Ácidos Ftálicos/toxicidad
10.
Environ Pollut ; 271: 116396, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33535362

RESUMEN

Landfills represent important sources of local emissions of organic contaminants, including halogenated (HFR) and organophosphate ester (OPE) flame retardants used in a large variety of consumer products. Gulls foraging in landfills may be exposed to elevated atmospheric concentrations of HFRs and OPEs that may vary spatially and temporally within a landfill site, thus modulating their exposure. The objective of the present study was to investigate the spatial and temporal variability of HFR and OPE concentrations in air samples collected from a major landfill in the Montreal area (QC, Canada) that is frequently visited by gulls for foraging. Miniature stationary passive air samplers (PASs) and high-volume active air samplers (AASs) were deployed in six different areas within this landfill site for 34 days to collect HFRs and OPEs in air. During the same period, wild-caught ring-billed gulls (Larus delawarensis) were equipped on their back with a similar miniature PAS that was deployed in the landfill along with a GPS datalogger to monitor their movements for ten days. Elevated concentrations of certain OPEs (e.g., tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate) and brominated diphenyl ether (BDE)-209 were measured in stationary PASs and AASs, although they were homogenously distributed within this landfill site. Temporal variability was observed for concentrations of BDE-209, -99 and -47 measured in AASs as well as tributyl phosphate during the 34-day deployment period. Moreover, air concentrations of BDE-209, -207 and -206 and selected OPEs (tris(1,3-dichloro-2-propyl) phosphate and tris(methylphenyl) phosphate) determined using AASs were positively correlated with ambient air temperatures. Gulls that visited a landfill at least once exhibited significantly greater concentrations of BDE-47 measured in PASs they carried on their back, suggesting that landfill air may represent a source of exposure to PBDEs for these birds, and potentially other urban-adapted wildlife using these sites for foraging.


Asunto(s)
Charadriiformes , Retardadores de Llama , Animales , Canadá , Monitoreo del Ambiente , Ésteres , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Organofosfatos , Instalaciones de Eliminación de Residuos
11.
Environ Pollut ; 269: 116115, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33279269

RESUMEN

Alberta's oil sands tailings ponds are suspected to be a source of fugitive emissions of polycyclic aromatic compounds (PACs) to the atmosphere. Here we report, for the first time, fluxes of 6 parent and 21 alkylated PACs based on the measured co-located air and water concentrations using a two-film fugacity-based model (FUG), an inverse dispersion model (DISP) and a simple box model (BOX). Air samples were collected at the Suncor Tailings Pond 2/3 using a high volume air sampler from the "pond" and towards the pond ("non-pond") directions separately. Mean ∑27PACs in air from the "pond" direction was greater than the "non-pond" direction by a factor of 17. Water-air fugacity ratio of 20 PACs quantifiable in water indicated net volatilization from water. Dispersion and box model results also indicated upward fluxes of 22 PACs. Correlation between the estimated flux results of BOX and DISP model was statistically significant (r = 0.99 and p < 0.05), and correlation between FUG and DISP results ranged from 0.54 to 0.85. In this first-ever assessment of PAC fluxes from tailings pond, the three models confirmed volatilization fluxes of PACs indicating Suncor Tailings Pond 2/3 is a source of PAC emissions to the atmosphere. This study addressed a key data gap identified in the Joint Oil Sands Monitoring Emissions Inventory Compilation Report (Government of Alberta and Canada, 2016) which is the lack of consistent real-world tailings pond fugitive emission monitoring of organic chemicals. Our findings highlight the need for measurements from other tailings ponds to determine their overall contribution in releasing PACs to the atmosphere. This paper presents a practical method for estimating PAC emissions from other tailings ponds, which can provide a better understanding of these fugitive emissions, and thereby help to improve the overall characterization of emissions in the oil sands region.


Asunto(s)
Compuestos Policíclicos , Estanques , Alberta , Yacimiento de Petróleo y Gas , Compuestos Orgánicos
12.
Environ Sci Technol ; 55(1): 304-312, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33305563

RESUMEN

Eleven organophosphate esters (OPEs) were detected in surface water and sediment samples from yearly sampling (2013-2018) in the Canadian Arctic. In water samples, ∑chlorinated-OPEs (Cl-OPEs) concentrations exceeded ∑non-chlorinated-OPEs (non-Cl-OPEs) with median concentrations of 10 ng L-1 and 1.3 ng L-1, respectively. In sediment samples, ∑Cl-OPEs and ∑nonchlorinated-OPEs had median concentrations of 4.5 and 2.5 ng g-1, respectively. High concentrations of OPEs in samples from the Mackenzie River plume suggest riverine discharge as an OPE source to the Canadian Arctic. The prevalence of OPEs at other sites is consistent with long-range transport. The OPE inventory of the Canadian Arctic Ocean representative of years 2013-2018 was estimated at 450-16,000 tonnes with a median ∑11OPE mass of 4100 tonnes with >99% of the OPE inventory estimated to be in the water column. These results highlight the importance of OPEs as water-based Arctic contaminants subject to long-range transport and local sources. The high OPE inventory in the water column of the Canadian Arctic Ocean points to the need for international regulatory mechanisms for persistent and mobile organic contaminants (PMOCs) that are not covered by the risk assessment criteria of the Stockholm Convention.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Regiones Árticas , Canadá , China , Ésteres , Océanos y Mares , Organofosfatos/análisis
13.
Environ Sci Technol ; 54(23): 15277-15286, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196172

RESUMEN

Silicone passive samplers were assessed for measuring personal exposure to 37 flame retardants at three Québec e-waste recycling facilities. Silicone brooches (n = 45), wristbands (n = 28), and armbands (n = 9) worn during a ∼8 h work shift accumulated detectable amounts of 95-100% of the target compounds. Brooch concentrations were significantly correlated with those from active air samplers from which we conclude that the brooches could be used to approximate inhalation exposure and other exposures related to air concentrations such as dermal exposure. The generic sampling rate of the brooch (19 ± 11 m3 day-1 dm-2) was 13 and 22 times greater than estimated for home and office environments, respectively, likely because of the dusty work environment and greater movement of e-waste workers. BDE-209 concentrations in brooches and wristbands were moderately and significantly (p < 0.05) correlated with levels in blood plasma; organophosphorus esters in brooches and wristbands were weakly and insignificantly correlated with their metabolite biomarkers in post-shift spot urine samples. Silicone brooches and wristbands deployed over a single shift in a dusty occupational setting can be useful for indicating the internal exposure to compounds with relatively long biological half-lives, but their use for compounds with relatively short half-lives is not clear and may require either a longer deployment time or an integrated biomarker measure.


Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Exposición Profesional , Monitoreo del Ambiente , Retardadores de Llama/análisis , Humanos , Organofosfatos , Quebec , Siliconas
14.
Proc Natl Acad Sci U S A ; 117(36): 22281-22292, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32843340

RESUMEN

Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios' variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.

15.
Environ Sci Technol ; 54(13): 8186-8197, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32539399

RESUMEN

Exposure to phthalates is pervasive and is of concern due to associations with adverse health effects. Exposures and exposure pathways of six phthalates were investigated for 51 women aged 18-44 years in Ontario, Canada, based on measured phthalate concentrations in hand wipes and indoor media in their residences. All six phthalates had detection frequencies of 100% in air (∑6670 ng m-3 geomean) and floor dust (∑6630 µg g-1), nearly 100% detection frequencies for hand palms and backs that were significantly correlated and concentrations were repeatable over a 3 week interval. Phthalates on hands were significantly correlated with levels in air and dust, as expected according to partitioning theory. Total exposure was estimated as 4860 ng kg bw-1 day-1 (5th and 95th percentiles 1980-16 950 ng kg bw-1 day-1), with dust ingestion, followed by hand-to-mouth transfer, as the dominant pathways. With the exception of diethyl phthalate (DEP), phthalates had over 50% detection frequencies in surface wipes of most electronic devices sampled, including devices in which the use of phthalates was not expected. Phthalate concentrations on surfaces of hand-held devices were ∼10 times higher than on non-hand-held devices and were correlated with levels on hands. The data are consistent with phthalate emissions from sources such as laminate flooring and personal care products (e.g., scented candles), followed by partitioning among air, dust, and surface films that accumulate on electronic devices and skin, including hands. We hypothesize that hands transfer phthalates from emission sources and dust to hand-held electronic devices, which accumulate phthalates due to infrequent washing and which act as a sink and then a secondary source of exposure. The findings support those of others that exposure can be mitigated by increasing ventilation, damp cloth cleaning, and minimizing the use of phthalate-containing products and materials.


Asunto(s)
Contaminación del Aire Interior , Ácidos Ftálicos , Adolescente , Adulto , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Femenino , Vivienda , Humanos , Ontario , Ácidos Ftálicos/análisis , Adulto Joven
16.
Sci Total Environ ; 720: 137480, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32146393

RESUMEN

Silicone (polydimethylsiloxane or PDMS) wristbands and cotton T-shirts were used to assess the exposure of e-waste recyclers in Dhaka, Bangladesh to polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphate esters (OPEs). The median surface-normalized uptake rates of PBDEs, NBFRs, DPs, and OPEs were 170, 8.5, 4.8, and 270 ng/dm2/h for wristbands and 5.4, 2.0, 0.94, and 23 ng/dm2/h for T-shirts, respectively. Concentrations of Tris(2-chloroethyl) phosphate (TCEP), Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Tri-m-cresyl phosphate (TmCP), Bis(2-ethlyhexyl) tetrabromophthalate (BEH-TEBP), and Dechlorane plus (DPs) in wristbands were significantly correlated with those in T-shirts. Wristbands accumulated ~7 times more mass than T-shirts, especially of compounds expected to be mainly in the gas phase. We introduce the silicone "sandwich" method to approximate the easily releasable fraction (ERF) from T-shirts, hypothesized to be related to dermal exposure. ERFs varied from 6 to 75% of total chemical accumulated by T-shirts and were significantly negatively correlated with compounds' octanol-air partition coefficient (log Koa). The median daily exposure doses via dermal transfer from the front of the T-shirt to the front body trunk were 0.32, 0.13, 0.11, and 9.1 ng/kg-BW/day for PBDEs, NBFRs, DPs, and OPEs, respectively. The evidence of e-waste recycler exposure to flame retardants in this low income country, lacking protective personal equipment, calls for measures to minimize their exposure and for chemical management regulations to consider exposures to chemicals in waste products.


Asunto(s)
Residuos Electrónicos , Bangladesh , Monitoreo del Ambiente , Ésteres , Retardadores de Llama , Éteres Difenilos Halogenados , Organofosfatos , Siliconas
17.
Environ Sci Process Impacts ; 22(4): 908-917, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32048673

RESUMEN

Volatile methylsiloxanes (VMS) have been identified as contaminants of emerging concern in aquatic systems. Here, we report on the presence of VMS in sediment and wastewater from Arctic regions in 2014 to 2016 and model their persistence in Adventfjorden in Longyearbyen, Svalbard. Total concentrations of VMS in sediment were dominated by D4 and D5 and ranged from 0.0024 to 1.7 ng g-1 at Svalbard (Longyearbyen), from 4.0 to 43 ng g-1 in Greenland (Nuuk) and from 0.19 to 21 ng g-1 in the Canadian Archipelago. Concentrations in wastewater samples from Svalbard ranged from 12 to 156 ng L-1. Large variability in reported values of the partition ratio between organic carbon and water (KOC) and enthalpy of sorption (ΔHOC; often estimated from enthalpy of phase change between octanol and water, ΔHOW) of VMS has resulted in high uncertainty in evaluating persistence in aquatic systems. We evaluated previously reported KOC and ΔHOC values from the literature in predicting measured VMS concentrations in sediment and wastewater in scenarios using a fugacity-based multimedia model for VMS concentrations in Svalbard. We tested two different model scenarios: (1) KOC and ΔHOW measurements for three cyclic VMS previously reported by Kozerski et al. (Environ. Toxicol. Chem., 2014, 33, 1937-1945) and Xu and Kropscott (Environ. Chem., 2014, 33, 2702-2710) and (2) the KOC and ΔHOC measurements from Panagopoulos et al. (Environ. Sci. Technol., 2015, 49, 12161-12168 and Environ. Sci. Technol. Lett., 2017, 4(6), 240-245). Concentrations of VMS in sediment predicted from concentrations in wastewater in scenario 2 were in good agreement with measured concentrations, whereas in scenario 1, predicted concentrations were 2 to 4 orders of magnitude lower. Such large discrepancies indicate that the differences in the predicted concentrations are more likely to be attributed to KOC and ΔHOC than to uncertainty in environmental parameters or emission rates.


Asunto(s)
Siloxanos , Contaminantes Químicos del Agua , Regiones Árticas , Canadá , Monitoreo del Ambiente , Sedimentos Geológicos , Aguas Residuales
18.
Environ Sci Process Impacts ; 22(1): 207-216, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894800

RESUMEN

Scientists and decision makers need accurate, accessible and fast tools to assess and prioritize the persistence (POV) and environmental long-range transport potential (LRTP) of chemicals. Here we evaluated the Organisation for Economic Co-operation and Development (OECD) POV and LRTP Screening Tool ("the Tool") with respect to the POV and LRTP estimates that the Tool provides for organophosphate esters (OPEs). We found that the use of default parameter values could significantly underestimate POV and LRTP values of OPEs and, potentially, other Persistent Mobile Organic Compounds (PMOCs), by not accounting for episodic atmospheric transport and poleward river-based transport in the northern hemisphere. Specifically, sensitivity and Monte Carlo uncertainty analyses indicate that non-chlorinated OPEs could be subject to LRTP when uncertainties in gas-particle partitioning and its implications for atmospheric degradation are considered, and chlorinated OPEs when river-based transport is considered. Further, the analyses showed strong dependence of results on the accuracy of the environmental half-lives used as input parameters. We suggest that the Tool could be modified to include an optional "Arctic (PMOC) LRTP setting" that incorporates episodic atmospheric and river-based transport as well as decreased environmental half-lives due to cold temperatures.


Asunto(s)
Contaminantes Ambientales , Organización para la Cooperación y el Desarrollo Económico , Organofosfatos , Regiones Árticas , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Ésteres , Organofosfatos/análisis
19.
Environ Int ; 128: 244-253, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059919

RESUMEN

BACKGROUND: In response to a worldwide increase in production of electronic waste, the e-recycling industry is rapidly rowing. E-recycling workers are exposed to many potentially toxic contaminants, among which flame retardants (FRs), mainly suspected of being endocrine disruptors, are thought to be the most prevalent. OBJECTIVE: To conduct an exposure assessment of four chemical groups of FRs in Canadian e-recycling facilities, and to identify the main cofactors of exposure. METHODS: Personal air samples were collected over a workday for 85 workers in six e-recycling facilities, grouped into three facility sizes, and for 15 workers in control commercial waste facilities. Total particulate matter was measured by gravimetry with stationary air samples. FRs were collected on OSHA versatile samplers, which allow particulate and vapor phases collection. Fifteen polybrominated diphenyl ether congeners (PBDEs), nine novel brominated (NBFRs), two chlorinated (ClFRs), and fourteen organophosphate ester (OPEs) flame retardants were analysed by gas chromatography-mass spectrometry. Sociodemographic data, tasks performed and materials processed by participating workers were recorded. Tobit regressions were used to identify cofactors of exposure, and their conclusions were corroborated using semi-parametric reverse Cox regressions. RESULTS: Thirty-nine of the 40 FRs analysed were detected in at least one air sample in e-recycling, and workers in this industry were exposed on average to 26 (range 12 to 39) different substances. The most detected chemical group of FRs in e-recycling was PBDEs with geometric mean sums of all congeners ranging from 120 to 5100 ng/m3, followed by OPEs with 740 to 1000 ng/m3, NBFRs with 7.6 to 100 ng/m3, and finally ClFRs with 3.9 to 32 mg/m3. The most important cofactor of exposure was the size of the e-recycling facility, with the largest one presenting on average 12 times the concentrations found in the control facility. Among tasks as potential cofactors of exposure, manual dismantling and baler operation exposed workers to some of the highest concentrations of PBDEs and ClFRs. There was a reduction of up to 27% in exposure to FRs associated with a 3-year increase in seniority. Finally, particulate matter concentrations in e-recycling facilities were highly correlated with all chemical classes except OPEs, and were higher in the large facility. CONCLUSIONS: Among the FRs analysed, PBDE exposure was particularly high in e-recycling. Dust and particulate matter reduction strategies in these workplaces, together with training on proper working practices would certainly be important first steps to lower occupational exposures and prevent potential health effects.


Asunto(s)
Polvo/análisis , Residuos Electrónicos/análisis , Retardadores de Llama/análisis , Exposición Profesional , Organofosfatos/análisis , Reciclaje , Adulto , Anciano , Canadá , Ésteres/análisis , Femenino , Halogenación , Humanos , Masculino , Persona de Mediana Edad , Material Particulado/análisis , Adulto Joven
20.
Environ Int ; 129: 95-104, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125732

RESUMEN

Exposure of e-waste workers to eight halogenated and five organophosphate ester flame retardant chemicals (FRs) was studied at a Canadian e-waste dismantling facility. FR concentrations were measured in air and dust samples collected at a central location and at four work benches over five-24 hour periods spanning two weeks. The highest concentrations in air from workbenches were of BDE-209 (median 156 ng m-3), followed by Tris(2-chloroethyl) phosphate (TCEP, median 59 ng m-3). Dust concentrations at the workbenches were higher than those measured at the central location, consistent with the release of contaminated dust during dismantling. Dust concentrations from the workbenches were also dominated by BDE-209 (median 96,300 ng g-1), followed by Triphenyl phosphate (TPhP, median 47,000 ng g-1). Most FRs were in coarse particles 5.6-18 µm diameter and ~30% were in respirable particles (<~3 µm). Exposure estimates indicated that dust ingestion accounted for 63% of total FR exposure; inhalation and dermal absorption contributed 35 and 2%, respectively. Some air and dust concentrations as well as some estimated exposures in this formal facility in a high-income country exceeded those from informal e-waste facilities located in low and middle income countries. Although there is demonstrated toxicity of some FRs, FR exposure in the e-waste industry has received minimal attention and occupational limits do not exist for most FRs.


Asunto(s)
Residuos Electrónicos/análisis , Retardadores de Llama/análisis , Canadá , Polvo/análisis , Femenino , Éteres Difenilos Halogenados/química , Halogenación , Humanos , Masculino , Exposición Profesional , Organofosfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA