Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Genet ; 14: 1222619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529779

RESUMEN

Introduction: Adolescence, a critical phase of human neurodevelopment, is marked by a tremendous reorganization of the brain and accompanied by improved cognitive performance. This development is driven in part by gene expression, which in turn is partly regulated by DNA methylation (DNAm). Methods: We collected brain imaging, cognitive assessments, and DNAm in a longitudinal cohort of approximately 200 typically developing participants, aged 9-14. This data, from three time points roughly 1 year apart, was used to explore the relationships between seven cytosine-phosphate-guanine (CpG) sites in genes highly expressed in brain tissues (GRIN2D, GABRB3, KCNC1, SLC12A9, CHD5, STXBP5, and NFASC), seven networks of grey matter (GM) volume change, and scores from seven cognitive tests. Results: The demethylation of the CpGs as well as the rates of change in DNAm were significantly related to improvements in total, crystalized, and fluid cognition scores, executive function, episodic memory, and processing speed, as well as several networks of GM volume increases and decreases that highlight typical patterns of brain maturation. Discussion: Our study provides a first look at the DNAm of genes involved in myelination, excitatory and inhibitory receptors, and connectivity, how they are related to the large-scale changes occurring in the brain structure as well as cognition during adolescence.

2.
Clin Epigenetics ; 13(1): 140, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34247653

RESUMEN

BACKGROUND: Major depression has been recognized as the most commonly diagnosed psychiatric complication of mild traumatic brain injury (mTBI). Moreover, major depression is associated with poor outcomes following mTBI; however, the underlying biological mechanisms of this are largely unknown. Recently, genomic and epigenetic factors have been increasingly implicated in the recovery following TBI. RESULTS: This study leveraged DNA methylation within the major depression pathway, along with demographic and behavior measures (features used in the clinical model) to predict post-concussive symptom burden and quality of life four-month post-injury in a cohort of 110 pediatric mTBI patients and 87 age-matched healthy controls. The results demonstrated that including DNA methylation markers in the major depression pathway improved the prediction accuracy for quality of life but not persistent post-concussive symptom burden. Specifically, the prediction accuracy (i.e., the correlation between the predicted value and observed value) of quality of life was improved from 0.59 (p = 1.20 × 10-3) (clinical model) to 0.71 (p = 3.89 × 10-5); the identified cytosine-phosphate-guanine sites were mainly in the open sea regions and the mapped genes were related to TBI in several molecular studies. Moreover, depression symptoms were a strong predictor (with large weights) for both post-concussive symptom burden and pediatric quality of life. CONCLUSION: This study emphasized that both molecular and behavioral manifestations of depression symptoms played a prominent role in predicting the recovery process following pediatric mTBI, suggesting the urgent need to further study TBI-caused depression symptoms for better recovery outcome.


Asunto(s)
Conmoción Encefálica/complicaciones , Trastorno Depresivo Mayor/etiología , Calidad de Vida/psicología , Adolescente , Conmoción Encefálica/epidemiología , Conmoción Encefálica/genética , Niño , Estudios de Cohortes , Metilación de ADN/genética , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/psicología , Femenino , Humanos , Masculino , Suiza/epidemiología
3.
Front Integr Neurosci ; 15: 755069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126065

RESUMEN

BACKGROUND: Schizophrenia is a brain disorder characterized by diffuse, diverse, and wide-spread changes in gray matter volume (GM) and white matter structure (fractional anisotropy, FA), as well as cognitive impairments that greatly impact an individual's quality of life. While the relationship of each of these image modalities and their links to schizophrenia status and cognitive impairment has been investigated separately, a multimodal fusion via parallel independent component analysis (pICA) affords the opportunity to explore the relationships between the changes in GM and FA, and the implications these network changes have on cognitive performance. METHODS: Images from 73 subjects with schizophrenia (SZ) and 82 healthy controls (HC) were drawn from an existing dataset. We investigated 12 components from each feature (FA and GM). Loading coefficients from the images were used to identify pairs of features that were significantly correlated and showed significant group differences between HC and SZ. MANCOVA analysis uncovered the relationships the identified spatial maps had with age, gender, and a global cognitive performance score. RESULTS: Three component pairs showed significant group differences (HC > SZ) in both gray and white matter measurements. Two of the component pairs identified networks of gray matter that drove significant relationships with cognition (HC > SZ) after accounting for age and gender. The gray and white matter structural networks identified in these three component pairs pull broadly from many regions, including the right and left thalamus, lateral occipital cortex, multiple regions of the middle temporal gyrus, precuneus cortex, postcentral gyrus, cingulate gyrus/cingulum, lingual gyrus, and brain stem. CONCLUSION: The results of this multimodal analysis adds to our understanding of how the relationship between GM, FA, and cognition differs between HC and SZ by highlighting the correlated intermodal covariance of these structural networks and their differential relationships with cognitive performance. Previous unimodal research has found similar areas of GM and FA differences between these groups, and the cognitive deficits associated with SZ have been well documented. This study allowed us to evaluate the intercorrelated covariance of these structural networks and how these networks are involved the differences in cognitive performance between HC and SZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA