Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 1362-1374, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222601

RESUMEN

Previously, refractory high-entropy alloys (HEAs) with high crystallinity were synthesized using a configurable target without heat treatment. This study builds upon prior investigations to develop nonrefractory elemental HEAs with low crystallinity using a novel target system. Different targets with various elemental compositions, i.e., Co20Cr20Ni20Mn20Mo20 (target 1), Co30Cr15Ni25Mn15Mo15 (target 2), and Co15Cr25Cu20Mn20Ni20 (target 3), are designed to modify the phase structure. The elemental composition is varied to ensure face-centered cubic (FCC) or body-centered cubic (BCC) phase stabilization. In target 1, the FCC and BCC phases coexist, whereas targets 2 and 3 are characterized by a single FCC phase. Thin films based on targets 1 and 2 exhibit crystalline phases followed by annealing, as indicated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. In contrast, target 3 yields crystalline thin films without any heat treatment. The thin-film coatings are classified based on the atomic size difference (δ). The δ value for the target with the elemental composition CoCrMoMnNi is 9.7, i.e., ≥6.6, corresponding to an HEA with an amorphous phase. However, the annealed thin film is considered a multiprincipal elemental alloy. In contrast, δ for the CoCrCuMnNi HEA is 5, i.e., ≤6.6, upon the substitution of Mo with Cu, and a solid solution phase is formed without any heat treatment. Thus, the degree of crystallinity can be controlled through heat treatment and the manipulation of δ in the absence of heat treatment. The XRD results clarify the crystallinity and phase structure, indicating the presence of FCC or a combination of FCC and BCC phases. The outcomes are consistent with those obtained through the analysis of the valence electron concentration based on X-ray photoelectron spectroscopy. Furthermore, a selected area electron diffraction analysis confirms the presence of both amorphous and crystalline structures in the HEA thin films. Additionally, phase evolution and segregation are observed at 500 °C.

2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279351

RESUMEN

The effects of TiO2 nanotube (TNT) and reduced graphene oxide (rGO) deposition onto titanium, which is widely used in dental implants, on Streptococcus mutans (S. mutans) and preosteoblastic cells were evaluated. TNTs were formed through anodic oxidation on pure titanium, and rGO was deposited using an atmospheric plasma generator. The specimens used were divided into a control group of titanium specimens and three experimental groups: Group N (specimens with TNT formation), Group G (rGO-deposited specimens), and Group NG (specimens under rGO deposition after TNT formation). Adhesion of S. mutans to the surface was assessed after 24 h of culture using a crystal violet assay, while adhesion and proliferation of MC3T3-E1 cells, a mouse preosteoblastic cell line, were evaluated after 24 and 72 h through a water-soluble tetrazolium salt assay. TNT formation and rGO deposition on titanium decreased S. mutans adhesion (p < 0.05) and increased MC3T3-E1 cell adhesion and proliferation (p < 0.0083). In Group NG, S. mutans adhesion was the lowest (p < 0.05), while MC3T3-E1 cell proliferation was the highest (p < 0.0083). In this study, TNT formation and rGO deposition on a pure titanium surface inhibited the adhesion of S. mutans at an early stage and increased the initial adhesion and proliferation of preosteoblastic cells.


Asunto(s)
Grafito , Nanotubos , Streptococcus mutans , Ratones , Animales , Titanio/farmacología , Titanio/química , Propiedades de Superficie , Nanotubos/química
3.
ACS Omega ; 8(31): 28333-28343, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576658

RESUMEN

This study presents a novel synthesis route for high-entropy alloys (HEAs) and high-entropy metallic glass (HEMG) using radio frequency (RF) magnetron sputtering and controlling the HEA phase selection according to atomic size difference (δ) and film thickness. The preparation of HEAs using sputtering requires either multitargets or the preparation of a target containing at least five distinct elements. In developing HEA-preparation techniques, the emergence of a novel sputtering target system is promising to prepare a wide range of HEAs. A new HEA-preparation technique is developed to avoid multitargets and configure the target elements with the required components in a single target system. Because of a customizable target facility, initially, a TiZrNbMoTaCr target emerged with an amorphous phase owing to a high δ value of 7.6, which was followed by a solid solution (SS) by lowering the δ value to 5 (≤6.6). Thus, this system was tested for the first time to prepare TiZrNbMoTa HEA and TiZrNbMoTa HEMG via RF magnetron sputtering. Both films were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, field emission scanning electron microscopy cross-sectional thickness, and atomic force microscopy (AFM). Furthermore, HEMG showed higher hardness 10.3 (±0.17) GPa, modulus 186 (±7) GPa, elastic deformation (0.055) and plastic deformation (0.032 GPa), smooth surface, lower corrosion current density (Icorr), and robust cell viability compared to CP-Ti and HEA. XRD analysis of the film showed SS with a body-centered cubic (BCC) structure with (110) as the preferred orientation. The valence electron concentration [VEC = 4.8 (<6.87)] also confirmed the BCC structure. Furthermore, the morphology of the thin film was analyzed through AFM, revealing a smooth surface for HEMG. Inclusively, the concept of configurational entropy (ΔSmix) is applied and the crystalline phase is achieved at room temperature, optimizing the processing by avoiding further furnace usage.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986017

RESUMEN

High-entropy alloys (HEAs) contain more than five alloying elements in a composition range of 5-35% and with slight atomic size variation. Recent narrative studies on HEA thin films and their synthesis through deposition techniques such as sputtering have highlighted the need for determining the corrosion behaviors of such alloys used as biomaterials, for example, in implants. Coatings composed of biocompatible elements such as titanium, cobalt, chrome, nickel, and molybdenum at the nominal composition of Co30Cr20Ni20Mo20Ti10 were synthesized by means of high-vacuum radiofrequency magnetron (HVRF) sputtering. In scanning electron microscopy (SEM) analysis, the coating samples deposited with higher ion densities were thicker than those deposited with lower ion densities (thin films). The X-ray diffraction (XRD) results of the thin films heat treated at higher temperatures, i.e., 600 and 800 °C, revealed a low degree of crystallinity. In thicker coatings and samples without heat treatment, the XRD peaks were amorphous. The samples coated at lower ion densities, i.e., 20 µAcm-2, and not subjected to heat treatment yielded superior results in terms of corrosion and biocompatibility among all the samples. Heat treatment at higher temperatures led to alloy oxidation, thus compromising the corrosion property of the deposited coatings.

5.
J Colloid Interface Sci ; 633: 53-59, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36434935

RESUMEN

An electrochemical nitrogen reduction reaction (ENRR) is considered a promising alternative for the traditional Haber-Bosch process. In this study, we present a method for improving the ENRR by controlling the wettability of the catalyst surface, suppressing the hydrogen evolution reaction (HER) while facilitating N2 adsorption. Reduced-graphene oxide (rGO) with a hydrophobic surface property and a contact angle (C.A.) of 59° was synthesized through a high-density atmospheric plasma deposition. Two other hydrophilic and superhydrophobic surfaces with a C.A. of 15° and 150° were developed through additional argon plasma and heat treatment of as-deposited rGO, respectively. The ENRR results showed that the ammonia yield and Faradaic efficiency tended to increase with increasing hydrophobicity. Electrochemical measurements reveal that superhydrophobic rGO achieves a higher Faradaic efficiency (5.73 %) at -0.1 V (vs RHE) and a higher NH3 yield (9.77 µg h-1 cm-2) at -0.4 V (vs RHE) in a 0.1 M KOH electrolyte. In addition, the computational fluid dynamics simulation confirmed that the amount of time the N2 gas remains on the surface could increase by improving the hydrophobicity of the catalytic surface. This study inspires the development of the rGO electrocatalyst through surface wettability modification for boosting ammonia electrosynthesis.


Asunto(s)
Amoníaco , Grafito , Humectabilidad , Nitrógeno
6.
Adv Mater ; 34(32): e2202866, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35700272

RESUMEN

The desire to enhance the efficiency of organic light-emitting devices (OLEDs) has driven to the investigation of advanced materials with fascinating properties. In this work, the efficiency of top-emission OLEDs (TEOLEDs) is enhanced by introducing ampicillin microstructures (Amp-MSs) with dual phases (α-/ß-phase) that induce photoluminescence (PL) and electroluminescence (EL). Moreover, Amp-MSs can adjust the charge balance by Fermi level (EF ) alignment, thereby decreasing the leakage current. The decrease in the wave-guided modes can enhance the light outcoupling through optical scattering. The resulting TEOLED demonstrates a record-high external quantum efficiency (EQE) (maximum: 68.7% and average: 63.4% at spectroradiometer; maximum: 44.8% and average: 42.6% at integrating sphere) with a wider color gamut (118%) owing to the redshift of the spectrum by J-aggregation. Deconvolution of the EL intensities is performed to clarify the contribution of Amp-MSs to the device EQE enhancement (optical scattering by Amp-MSs: 17.0%, PL by radiative energy transfer: 9.1%, and EL by J-aggregated excitons: 4.6%). The proposed TEOLED outperforms the existing frameworks in terms of device efficiency.

8.
Sci Rep ; 12(1): 2300, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145146

RESUMEN

Herein, an unprecedented report is presented on the incorporation of size-dependent gold nanoparticles (AuNPs) with polyvinylpyrrolidone (PVP) capping into a conventional hole transport layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The hole transport layer blocks ion-diffusion/migration in methylammonium-lead-bromide (MAPbBr3)-based perovskite light-emitting diodes (PeLEDs) as a modified interlayer. The PVP-capped 90 nm AuNP device exhibited a seven-fold increase in efficiency (1.5%) as compared to the device without AuNPs (0.22%), where the device lifetime was also improved by 17-fold. This advancement is ascribed to the far-field scattering of AuNPs, modified work function and carrier trapping/detrapping. The improvement in device lifetime is attributed to PVP-capping of AuNPs which prevents indium diffusion into the perovskite layer and surface ion migration into PEDOT:PSS through the formation of induced electric dipole. The results also indicate that using large AuNPs (> 90 nm) reduces exciton recombination because of the trapping of excess charge carriers due to the large surface area.

10.
Nat Commun ; 12(1): 2864, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001906

RESUMEN

Stretchable organic light-emitting diodes are ubiquitous in the rapidly developing wearable display technology. However, low efficiency and poor mechanical stability inhibit their commercial applications owing to the restrictions generated by strain. Here, we demonstrate the exceptional performance of a transparent (molybdenum-trioxide/gold/molybdenum-trioxide) electrode for buckled, twistable, and geometrically stretchable organic light-emitting diodes under 2-dimensional random area strain with invariant color coordinates. The devices are fabricated on a thin optical-adhesive/elastomer with a small mechanical bending strain and water-proofed by optical-adhesive encapsulation in a sandwiched structure. The heat dissipation mechanism of the thin optical-adhesive substrate, thin elastomer-based devices or silicon dioxide nanoparticles reduces triplet-triplet annihilation, providing consistent performance at high exciton density, compared with thick elastomer and a glass substrate. The performance is enhanced by the nanoparticles in the optical-adhesive for light out-coupling and improved heat dissipation. A high current efficiency of ~82.4 cd/A and an external quantum efficiency of ~22.3% are achieved with minimum efficiency roll-off.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA