Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
World J Psychiatry ; 14(9): 1364-1374, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39319230

RESUMEN

BACKGROUND: The occurrence of postoperative depression and anxiety in patients with endometriosis (EMS) not only causes psychological distress, but may also harm their physical health. AIM: To explore the postoperative depression status, and its influencing factors, of EMS patients with reproductive intention. METHODS: A total of 321 EMS patients with reproductive intent were included. Using the self-rating anxiety scale and self-rating depression scale, EMS patients with anxiety or depression were distinguished. A clinical model for predicting anxiety or depression in EMS patients was constructed and evaluated using a nomogram, receiver operating characteristic curve, and calibration curve. RESULTS: The results of the single factor analysis showed that smoking, coffee, EMS stage, chronic pelvic pain, and sexual discomfort may be related to anxiety. Further, smoking, drinking, spouse, annual household income and EMS stage may be related to depression in EMS patients. Multivariate logistic regression illustrated that smoking, coffee, chronic pelvic pain and sexual discomfort may be independent risk factors for anxiety in EMS patients, while smoking, EMS stage (Phase III and Phase IV), spouse and high annual household income may be independent risk factors for depression in EMS patients. Additionally, the models used to predict the risk of anxiety or depression in EMS patients have good predictive value. CONCLUSION: The anxiety and depression of EMS patients may be related to many factors. In clinical treatment, additional attention should be paid to the psychological status of EMS patients.

2.
ACS Sens ; 9(9): 4956-4962, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39283684

RESUMEN

Natural products play a significant role in new drug discovery and anticancer therapy, making the evaluation of their anticancer efficiency crucial for clinical application. However, delivering natural products to single cells and in situ monitoring of induced signaling molecule fluctuation to evaluate anticancer efficiency remain significant challenges. Hence, we proposed a universal and straightforward strategy to construct a bifunctional nanoelectrode that integrates drug loading and monitoring of signal molecule fluctuations at the single-cell level. Platinum (Pt) nanoparticles/reduced graphene oxide (rGO) composites were first electrochemically deposited on the carbon fiber nanoelectrode (CFNE@Pt/rGO) to serve as electrocatalytic materials for the monitoring of natural-product-induced reactive oxygen species (ROS) generation. The GO/natural product complex, formed by π-π stacking and hydrophobic interactions, was further electrochemically reduced on the surface of CFNE@Pt/rGO to enable the CFNE drug-loading function. Using this bifunctional functional nanoelectrode, a series of natural products (such as capsaicin, curcumin, and chrysin) were delivered into single cancer cells, and their anticancer efficiency was evaluated by measuring ROS generation. The results showed that intracellular ROS production induced by chrysin was 1.5-fold greater than that of curcumin and 2.1-fold greater than that of capsaicin. This work proposes an effective tool to evaluate the anticancer efficiency of various natural products. Additionally, this nanotool can be expanded to monitor the fluctuation of other biomolecules (such as RNS, GSH, NADH, etc.) by replacing Pt nanoparticles with other electrocatalytic materials, which is significant for comprehensively exploring the anticancer efficiency of new drugs and for the clinical treatment of various diseases.


Asunto(s)
Antineoplásicos , Productos Biológicos , Grafito , Platino (Metal) , Especies Reactivas de Oxígeno , Humanos , Grafito/química , Especies Reactivas de Oxígeno/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Platino (Metal)/química , Platino (Metal)/farmacología , Electrodos , Análisis de la Célula Individual/métodos , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química
3.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275065

RESUMEN

This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2'-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2'-bpy)3][Pb2Br6] (2), synthesized via solvothermal reactions. These compounds incorporate transition metal complex cations as structural directors, contributing to the unique photophysical and photocatalytic properties of the resulting materials. Single-crystal X-ray diffraction analysis reveals that both compounds crystallize in monoclinic space groups with distinct 1D lead bromide chain configurations influenced by the nature of the complex cations. Optical property assessments show band gaps of 3.04 eV and 2.02 eV for compounds 1 and 2, respectively, indicating their potential for visible light absorption. Photocurrent measurements indicate a significantly higher electron-hole separation efficiency in compound 2, correlated with its narrower band gap. Additionally, photocatalytic evaluations demonstrate that while both compounds degrade organic dyes effectively, compound 2 also exhibits notable hydrogen evolution activity under visible light, a property not observed in 1. These findings highlight the role of metal complex cations in tuning the electronic and structural properties of lead(II) bromide hybrids, enhancing their applicability in photocatalytic and optoelectronic devices.

4.
Org Lett ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311488

RESUMEN

Herein, we report a mild and operationally simple photoredox/NHC dual catalysis strategy for the α-carboxylation of tertiary amine C(sp3)-H bonds using diethyl pyrocarbonate. This method offers a novel approach for synthesizing α-amino acid derivatives. The protocol features a broad substrate scope, accommodating both N-aryl tetrahydroisoquinolines (THIQ) and N-methyl aniline and is scalable to gram quantities. Additionally, it is suitable for the late-stage derivatization of certain pharmaceutical compounds.

5.
Plant Divers ; 46(4): 448-461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39280966

RESUMEN

Cymbidium (Orchidaceae: Epidendroideae), with around 60 species, is widely-distributed across Southeast Asia, providing a nice system for studying the processes that underlie patterns of biodiversity in the region. However, phylogenetic relationships of Cymbidium have not been well resolved, hampering investigations of species diversification and the biogeographical history of this genus. In this study, we construct a plastome phylogeny of 56 Cymbidium species, with four well-resolved major clades, which provides a framework for biogeographical and diversification rate analyses. Molecular dating and biogeographical analyses show that Cymbidium likely originated in the region spanning northern Indo-Burma to the eastern Himalayas during the early Miocene (∼21.10 Ma). It then rapidly diversified into four major clades in East Asia within approximately a million years during the middle Miocene. Cymbidium spp. migration to the adjacent regions (Borneo, Philippines, and Sulawesi) primarily occurred during the Pliocene-Pleistocene period. Our analyses indicate that the net diversification rate of Cymbidium has decreased since its origin, and is positively associated with changes in temperature and monsoon intensity. Favorable hydrothermal conditions brought by monsoon intensification in the early Miocene possibly contributed to the initial rapid diversification, after which the net diversification rate was reduced with the cooling climate after the middle Miocene. The transition from epiphytic to terrestrial habits may have enabled adaptation to cooler environments and colonization of northern niches, yet without a significant effect on diversification rates. This study provides new insights into how monsoon activity and temperature changes affected the diversification dynamics of plants in Southeast Asia.

6.
Water Res ; 267: 122484, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39321725

RESUMEN

The fate and ecological impact of antibiotics on aquatic ecosystems have not been properly elucidated in mesocosm wetlands scale. This study explored how tetracyclines (TCs, including tetracycline TC and oxytetracycline) and fluoroquinolones (QNs, including ciprofloxacin CIP and levofloxacin) affect mesocosm wetlands vegetated by V. spiralis, focusing on their impact on epiphytic biofilm microbial communities and antibiotic resistance genes (ARGs). Results showed that submerged plants absorbed more antibiotics than sediment. Both TCs and QNs disrupted microbial communities in different ways and increased eukaryotic community diversity in a concentration-dependent manner (2-4 mg/L for CIP, 4-8 mg/L for TC). TCs mainly inhibited epiphytic bacteria, while CIP increased bacterial phyla abundance. TC reduced Cyanobacteriota, Acidobacteriota, and Patescibacteria but increased Bacillota, Bacteroidota, and Armatimonadota. In contrast, CIP reduced Bacteroidota, Cyanobacteriota, and Gemmatimonadota but increased Bacillota, Planctomycetota, and Acidobacteriota. Significant differences in ARG profiles were observed between QNs and TCs, with TCs having a more substantial effect on ARGs due to their stronger impact on bacterial communities. Both antibiotics raised ARG levels with higher concentrations, particularly for multidrug resistance, tetracyclines, trimethoprim, sulfonamides, aminoglycosides, and fosfomycin, emphasizing their role in antimicrobial resistance. The study suggests that antibiotics can either stimulate or inhibit ARGs depending on their effects on bacterial communities. This study provides key evidence on the ecological mechanisms underlying the impact of TCs and QNs on epiphytic microbes of mesocosm wetlands.

7.
Huan Jing Ke Xue ; 45(8): 4398-4410, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168660

RESUMEN

In recent years, ground-level-ozone(O3) pollution in urban areas in the Bohai Rim has attracted wide attention. Based on the analysis of the spatiotemporal distribution characteristics of O3 concentration in Dongying, a representative city in the Bohai Rim from 2017 to 2022, the effects of meteorological factors and sea-land breeze circulation on O3 concentration were evaluated. The results showed that: ① From 2017 to 2022, the annual assessment value of O3 concentration in Dongying showed a fluctuating upward trend, and the pollution days with O3 as the primary pollutant increased. O3 pollution mainly occurred in spring, summer, and autumn, with the most severe O3 pollution episodes typically occurring in May and June, and the duration of O3 pollution season tended to be longer. The monthly variation in the daily maximum 8-h average ozone (MDA8 O3) presented a bimodal distribution, with significant increases in the 5th and 25th percentiles, and the spatial distribution was "high in the north and south, low in the middle." In addition, the nocturnal O3 concentration in recent years in Dongying also showed a significant increase trend. ② Meteorological factors greatly influenced O3 concentration in Dongying. When the temperature was greater than 30℃, the relative humidity was less than 50%, and the wind direction was south-southwest or east-northeast, a high O3 value was more likely to occur. Meteorological factors contributed 30% of the MDA8 O3 variation in Dongying during the study period. In the case of moderate and severe O3 pollution, the contribution of meteorological factors to the change in MDA8 O3 could be as high as 40%. ③ To some extent, sea-land breeze contributed to the occurrence of MDA8 O3 exceeding the secondary standard limit value of the National Ambient Air Quality Standard. In the afternoon, the hourly concentration of O3 during the sea-land breeze days was approximately 20 µg·m-3 higher than that during the non-sea-land breeze days. On the days of moderate and severe O3 pollution, the O3 concentration during the sea-land breeze days from 10:00 to 16:00 was higher than that during non-sea-land breeze days, and the O3 concentration was also at a high level from 20:00 to 23:00 on sea-land breeze days. In the O3 pollution season, the sea-land breeze could significantly affect the O3 level in coastal cities, which could bring significant challenges for O3 pollution prevention and control in this region. In the future, cities in the Bohai Rim need to further strengthen regional joint prevention and control of O3 pollution and increase emission reduction efforts of nitrogen oxides and volatile organic compounds. This strategy could effectively lower pollutant concentrations within the land breeze air mass, consequently reducing the impact of the sea breeze air mass on air quality in cities in the Bohai Rim.

8.
Front Cell Infect Microbiol ; 14: 1413589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170987

RESUMEN

Background: About 20% of on-treatment patients with chronic hepatitis B (CHB) experienced low-level viraemia (LLV), which is associated with persistent low-grade inflammation, fibrosis progression, and increased risk of hepatocellular carcinoma. We aimed to investigate the high-risk factors related to LLV. Methods: In this retrospective study, patients receiving entecavir (ETV) treatment from January 2018 to January 2023 were enrolled, and were divided into a LLV (HBV DNA 20-2000 IU/mL) cohort and a complete virological response (CVR) (HBV DNA < 20 IU/mL) cohort according to the virological response at week 48 posttreatment. Treatment baseline characteristics were retrieved from electronic medical records. Multivariate logistic regression was performed. Results: Totally, 1653 patients were enrolled, male patients accounted for 73.0%; the median age was 44 years; the mean HBV DNA level was 5.9 Log10 IU/ml. Among them, 472 (28.6%) experienced LLV. Multivariate analysis showed that HBeAg positivity (OR = 2.650, 95% CI: 2.000-3.511, p < 0.001), HBV DNA ≥ 6.0 Log10 IU/mL (OR = 1.370, 95% CI: 1.054-1.780, p = 0.019), qHBsAg ≥ 9000 IU/mL (OR = 4.472, 95% CI: 3.410-5.866, p < 0.001), cirrhosis (OR = 1.650, 95% CI: 1.234-2.207, P = 0.001), LSM ≥ 13.0 kPa (OR = 1.644, 95% CI: 1.203-2.246, p = 0.002), and PLT < 100×109/L (OR = 1.450, 95% CI: 1.094-1.922, p = 0.010) at baseline were related to the development of LLV. Conclusions: High HBV DNA/HBsAg quantification/LSM, low PLT, HBeAg positivity, and liver cirrhosis were high-risk factors associated with LLV in patients receiving entecavir treatment.


Asunto(s)
Antivirales , ADN Viral , Guanina , Virus de la Hepatitis B , Hepatitis B Crónica , Viremia , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/complicaciones , Masculino , Guanina/análogos & derivados , Guanina/uso terapéutico , Femenino , Adulto , Factores de Riesgo , Antivirales/uso terapéutico , Estudios Retrospectivos , Persona de Mediana Edad , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , ADN Viral/sangre , Antígenos e de la Hepatitis B/sangre , Cirrosis Hepática/virología , Carga Viral/efectos de los fármacos
9.
J Colloid Interface Sci ; 677(Pt B): 331-341, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151226

RESUMEN

Anchoring Pt onto multi-heteroatom doped carbon materials has been recognized as an effective approach to improve the performance of electrocatalytic methanol oxidation. However, distinct contributions and specific behavior mechanisms of different heteroatoms, notably N and P, the specific behavior mechanisms in synergistically promoting Pt NPs remain elusive. In this work, we construct 1D N and P co-doped carbon nanotube (N, P-CNTs) supports with abundant defect anchors for Pt. The as-prepared Pt/N, P-CNTs exhibit outstanding activity and exceptional stability in methanol oxidation reaction (MOR), achieving high mass activity up to 6481.3 mA mg-1Pt. Moreover, they can retain 90.5 % of their initial current density even after 800 cycles tests. Detailed characterizations and theoretical calculations indicate that the robust strong metal-support interactions (SMSI) effect caused by N doping within the unique N and P co-doped coordination structure controllably regulate the coordination environment of Pt, reduce the d-band center of Pt, thus promoting the adsorption and decomposition of CH3OH. However, P doping weakens the adsorption strength of CO on the Pt active site by sacrificing partial electron transfer, accelerating the oxidative conversion of the CO-like poisoning species (COads). Significantly, the synergistic mechanism of N and P species on the modification of Pt's electronic structure and its subsequent impact on the electrocatalytic methanol oxidation behaviors on the Pt surface was thoroughly elucidated, providing a constructive route for designing robust MOR electrocatalysts with high MOR activity and durability.

10.
J Hazard Mater ; 477: 135395, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106729

RESUMEN

Microbial metabolism in landfill leachate systems is critically important in driving the degradation reactions of organic pollutants, including the emerging pollutant bisphenol A (BPA). However, little research has addressed the microbial degradation of BPA in landfill leachate and its interactions with nitrogen (N), sulfur (S), and methane (CH4) metabolism on a global scale. To this end, in this study on a global scale, an extremely high concentration of BPA was detected throughout the global landfill leachates. Subsequent reconstructive analyses of metagenomic datasets from 113 sites worldwide revealed that the predominant BPA-degrading microflora included Proteobacteria, Firmicutes, and Bacteroidota. Further metabolic analyses revealed that all four biochemical pathways involved in the degradation of BPA were achieved through biochemical cooperation between different bacterial members of the community. In addition, BPA degraders have also been found to actively collaborate synergistically with non-BPA degraders in the N and S removal as well as CH4 catabolism in landfill leachates. Collectively, this study not only provides insights into the dominant microbial communities and specific types of BPA-degrading microbial members in the community of landfill leachates worldwide, but also reveals the synergistic interactions between BPA mineralization and N, S, and CH4 metabolism. These findings offer valuable and important insights for future comprehensive and in-depth investigations into BPA metabolism in different environments.


Asunto(s)
Compuestos de Bencidrilo , Biodegradación Ambiental , Metagenómica , Metano , Nitrógeno , Fenoles , Azufre , Contaminantes Químicos del Agua , Fenoles/metabolismo , Contaminantes Químicos del Agua/metabolismo , Compuestos de Bencidrilo/metabolismo , Metano/metabolismo , Azufre/metabolismo , Azufre/química , Nitrógeno/metabolismo , Instalaciones de Eliminación de Residuos , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
11.
Water Res X ; 24: 100237, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39155949

RESUMEN

Nitrite-oxidizing bacteria (NOB) are undesirable in the anaerobic ammonium oxidation (anammox)-driven nitrogen removal technologies in the modern wastewater treatment plants (WWTPs). Diverse strategies have been developed to suppress NOB based on their physiological properties that we have understood. But our knowledge of the diversity and mechanisms employed by NOB for survival in the modern WWTPs remains limited. Here, Three NOB species (NOB01-03) were recovered from the metagenomic datasets of a full-scale WWTP treating duck breeding wastewater. Among them, NOB01 and NOB02 were classified as newly identified lineage VII, tentatively named Candidatus (Ca.) Nitrospira NOB01 and Ca. Nitrospira NOB02. Analyses of genomes and in situ transcriptomes revealed that these two novel NOB were active and showed a high metabolic versatility. The transcriptional activity of Ca. Nitrospira could be detected in all tanks with quite different dissolved oxygen (DO) (0.01-5.01 mg/L), illustrating Ca. Nitrospira can survive in fluctuating DO conditions. The much lower Ca. Nitrospira abundance on the anammox bacteria-enriched sponge carrier likely originated from the intensification substrate (NO2 -) competition from anammox and denitrifying bacteria. In particular, a highlight is that Ca. Nitrospira encoded and treanscribed cyanate hydratase (CynS), amine oxidase, urease (UreC), and copper-containing nitrite reductase (NirK) related to ammonium and NO production, driving NOB to interact with the co-existed AOB and anammox bacteria. Ca. Nitrospira strains NOB01 and NOB02 showed quite different niche preference in the same aerobic tank, which dominanted the NOB communities in activated sludge and biofilm, respectively. In addition to the common rTCA cycle for CO2 fixation, a reductive glycine pathway (RGP) was encoded and transcribed by NOB02 likely for CO2 fixation purpose. Additionally, a 3b group hydrogenase and respiratory nitrate reductase were uniquely encoded and transcribed by NOB02, which likely confer a survival advantage to this strain in the fluctuant activated sludge niche. The discovery of this new genus significantly broadens our understanding of the ecophysiology of NOB. Furthermore, the impressive metabolic versatility of the novel NOB revealed in this study advances our understanding of the survival strategy of NOB and provides valuable insight for suppressing NOB in the anammox-based WWTP.

12.
Sensors (Basel) ; 24(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204915

RESUMEN

There is a significant difference between the simulation effect and the actual effect in the design process of maize straw-breaking equipment due to the lack of accurate simulation model parameters in the breaking and processing of maize straw. This article used a combination of physical experiments, virtual simulation, and machine learning to calibrate the simulation parameters of maize straw. A bimodal-distribution discrete element model of maize straw was established based on the intrinsic and contact parameters measured via physical experiments. The significance analysis of the simulation parameters was conducted via the Plackett-Burman experiment. The Poisson ratio, shear modulus, and normal stiffness of the maize straw significantly impacted the peak compression force of the maize straw and steel plate. The steepest-climb test was carried out for the significance parameter, and the relative error between the peak compression force in the simulation test and the peak compression force in the physical test was used as the evaluation index. It was found that the optimal range intervals for the Poisson ratio, shear modulus, and normal stiffness of the maize straw were 0.32-0.36, 1.24 × 108-1.72 × 108 Pa, and 5.9 × 106-6.7 × 106 N/m3, respectively. Using the experimental data of the central composite design as the dataset, a GA-BP neural network prediction model for the peak compression force of maize straw was established, analyzed, and evaluated. The GA-BP prediction model's accuracy was verified via experiments. It was found that the ideal combination of parameters was a Poisson ratio of 0.357, a shear modulus of 1.511 × 108 Pa, and a normal stiffness of 6.285 × 106 N/m3 for the maize straw. The results provide a basis for analyzing the damage mechanism of maize straw during the grinding process.


Asunto(s)
Algoritmos , Zea mays , Zea mays/química , Calibración , Redes Neurales de la Computación , Simulación por Computador
14.
J Agric Food Chem ; 72(31): 17405-17416, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042819

RESUMEN

Botrytis cinerea is an important fungal pathogen that causes gray mold disease in plants. Previously, Bacillus velezensis TCS001 live culture presented broad-spectrum antifungal activity against various plant pathogenic fungi and oomycetes, particularly B. cinerea. Here, the bioactivity of lipopeptides produced by TCS001 against B. cinerea was investigated. The IC50 values of the crude lipopeptide extract (CLE) from TCS001 to suppress mycelial growth and conidial germination were 14.20 and 49.39 mg/L, respectively. SEM and TEM imaging revealed that CLE caused morphological deformities and ultrastructural changes in the mycelium. Transcriptomic analyses combined with ΔBcpsd mutant construction demonstrated that the CLE could confer antifungal activity via suppressing Bcpsd expression in the pathogen. In addition, the CLE activated the plant immune system by increasing the content of defense-related enzymes and the expression of marker genes in immunity signaling pathways in cucumber plants. Therefore, TCS001 CLE could be potentially developed into biopesticides for the biocontrol of gray mold disease.


Asunto(s)
Bacillus , Botrytis , Cucumis sativus , Lipopéptidos , Enfermedades de las Plantas , Botrytis/efectos de los fármacos , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/metabolismo , Enfermedades de las Plantas/microbiología , Cucumis sativus/microbiología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Perfilación de la Expresión Génica , Esporas Fúngicas/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Transcriptoma , Micelio/efectos de los fármacos , Micelio/química , Micelio/crecimiento & desarrollo
15.
Reprod Sci ; 31(10): 3191-3201, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39060751

RESUMEN

Stress is an emotional state caused by an unexpected external environmental change or stimulus, and several experiments have demonstrated its negative impact on ovarian function, ultimately affecting reproductive ability. Melatonin (MT) has been shown to facilitate oocyte maturation and enhance ovarian function by regulating mitochondrial function. However, the specific effect and underlying molecular mechanisms of MT on stress-induced ovarian dysfunction remain largely unknown. In this study, we established a mouse model of chronic unpredictable mild stress (CUMS) to investigate its impact on ovarian function. Our findings revealed that CUMS led to premature ovarian insufficiency (POI) in mice, characterized by a reduction in follicle numbers and decreased levels of anti-Müllerian hormone (AMH) and bone morphogenetic protein 15 (BMP15). Furthermore, CUMS caused decreased expression of mitochondrial fission protein 1 (FIS1) and enhanced level of mitochondrial fusion protein optic atrophy 1(OPA1), mitofusin1(MFN1), as well as nucleus-encoded protein succinate dehydrogenase complex A (SDHA), reflecting mitochondrial dyshomeostasis. Additionally, CUMS resulted in excessive autophagy and apoptosis. However, MT reversed these effects and improved ovarian damage. Importantly, the protective effects of MT were mediated through the inhibition of the eIF2α-AFT4 pathway. Overall, this study provides valuable insights into the treatment of POI caused by CUMS.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Melatonina , Mitocondrias , Ovario , Transducción de Señal , Estrés Psicológico , Animales , Femenino , Melatonina/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Ovario/metabolismo , Ovario/efectos de los fármacos , Ovario/patología , Estrés Psicológico/metabolismo , Estrés Psicológico/complicaciones , Homeostasis/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Ratones Endogámicos C57BL
16.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001158

RESUMEN

Accurate weed detection is essential for the precise control of weeds in wheat fields, but weeds and wheat are sheltered from each other, and there is no clear size specification, making it difficult to accurately detect weeds in wheat. To achieve the precise identification of weeds, wheat weed datasets were constructed, and a wheat field weed detection model, YOLOv8-MBM, based on improved YOLOv8s, was proposed. In this study, a lightweight visual converter (MobileViTv3) was introduced into the C2f module to enhance the detection accuracy of the model by integrating input, local (CNN), and global (ViT) features. Secondly, a bidirectional feature pyramid network (BiFPN) was introduced to enhance the performance of multi-scale feature fusion. Furthermore, to address the weak generalization and slow convergence speed of the CIoU loss function for detection tasks, the bounding box regression loss function (MPDIOU) was used instead of the CIoU loss function to improve the convergence speed of the model and further enhance the detection performance. Finally, the model performance was tested on the wheat weed datasets. The experiments show that the YOLOv8-MBM proposed in this paper is superior to Fast R-CNN, YOLOv3, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv9, and other mainstream models in regards to detection performance. The accuracy of the improved model reaches 92.7%. Compared with the original YOLOv8s model, the precision, recall, mAP1, and mAP2 are increased by 10.6%, 8.9%, 9.7%, and 9.3%, respectively. In summary, the YOLOv8-MBM model successfully meets the requirements for accurate weed detection in wheat fields.


Asunto(s)
Malezas , Triticum , Triticum/fisiología , Malezas/fisiología , Redes Neurales de la Computación , Algoritmos
17.
Asian J Androl ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38978290

RESUMEN

ABSTRACT: Compounds isolated from Epimedium include the total flavonoids of Epimedium, icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium, its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.

18.
Langmuir ; 40(32): 16713-16721, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39074038

RESUMEN

To facilitate effective training for freestyle skiers on artificial dry ski slopes, it is crucial to reduce the friction coefficient of the slopes and closely match it with that of snow. Traditional lubrication methods, such as water or soapy water, come with multiple disadvantages, including water waste, which leads to environmental pollution, short-lived effectiveness, and high costs. In this study, we have successfully developed a method for the scalable preparation of a liquid-infused coating (LIC) by tandem spraying inexpensive and environmentally friendly SiO2 particles and silicone oil lubricants. Experimental results showed that the resulting LIC is capable of imparting slippery properties to various surfaces, regardless of the surface chemistry. Moreover, the presence of LIC could reduce the friction coefficient significantly. By carefully regulating the surface composition, we achieved a friction coefficient of 0.059 between a snowboard and the LIC-functionalized ski slope, closely matching that between the snowboard and snow in a typical skiing competition venue (∼0.06). We successfully applied LIC onto 103 m2 dry ski slopes, providing a training ground for professional freestyle skiers.

19.
Langmuir ; 40(31): 16538-16548, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041610

RESUMEN

The theory of heat conduction paths has been widely recognized and widely studied in the research about the thermal conductivity of thermal conductive polymer composites at present. Encapsulating polymer pellets with thermally conductive fillers and processing them into thermally conductive polymer composites is a simple and effective method for constructing heat conduction paths. It is meaningful to investigate the related heat conduction mechanism of this method. Otherwise, this approach can significantly preserve the performance of the polymer substrate, making it highly valuable for practical material applications. In this work, polyethylene-octene elastomer (POE) pellets were encapsulated with thermal conductive fillers by physical absorption. Subsequently, the composite films containing heat conduction paths were fabricated using the encapsulated POE pellets through a heating press. Alumina (Al2O3), boron nitride (BN), and alumina/boron nitride hybrid (Al2O3/BN) fillers were used to prepare Al2O3@POE, BN@POE, and BN/Al2O3@POE composite films to investigate the influence of filler shapes on heat conduction path construction. The influence of the constitute and density of heat conduction paths on the thermal conductivity of composite films was analyzed by infrared thermal imaging, finite element analysis, and thermal resistance theory in detail. Owing to the reserved good adhesion and flexibility of the POE substrate, the composite films could be directly used as thermal interface materials for chip cooling, which presented a good heat dissipation effect. Furthermore, a series of integrated composite materials were prepared by the combination of encapsulated pellets with various functional films (copper foil, aluminum foil, and graphite sheet) through a one-pot heating press, exhibiting a good electromagnetic shielding effect. The performance of the composites and the corresponding preparation method demonstrate the strong significance of this research for practical applications.

20.
Hepatol Int ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965190

RESUMEN

BACKGROUND AND AIMS: The risk of hepatocellular carcinoma (HCC) occurrence following antiviral therapy in patients with chronic hepatitis C (CHC) remains unclear. The current study aims to compare: (1) the HCC occurrence rate following sustained virological response (SVR) versus non-response (NR); (2) the HCC occurrence rate following direct-acting antiviral (DAA) therapy versus interferon (IFN)-based therapy, and (3) the HCC occurrence rate in SVR patients with or without cirrhosis. METHODS: A search was performed for articles published between January 2017 and July 2022. Studies were included if they assessed HCC occurrence rate in CHC patients following anti-HCV therapy. Random effects meta-analysis was used to synthesize the results from individual studies. RESULTS: A total of 23 studies including 29,395 patients (IFN-based = 6, DAA = 17; prospective = 10, retrospective = 13) were included in the review. HCC occurrence was significantly lower in CHC with SVR (1.54 per 100 person-years (py, 95% CI 1.52, 1.57) than those in non-responders (7.80 py, 95% CI 7.61, 7.99). Stratified by HCV treatment regimens, HCC occurrence following SVR was 1.17 per 100 py (95% CI 1.11, 1.22) and 1.60 per 100 py (95% CI 1.58, 1.63) in IFN- and DAA treatment-based studies. HCC occurrence was 0.85 per 100 py (95% CI 0.85, 0.86) in the non-cirrhosis population and rose to 2.47 per 100 py (95% CI 2.42, 2.52) in the cirrhosis population. Further meta-regression analysis showed that treatment types were not associated with a higher HCC occurrence rate, while cirrhosis status was an important factor of HCC occurrence rate. CONCLUSION: HCC occurrence was significantly lower in the SVR population than in the NR population. HCC risk following SVR occurred three times more frequently in patients with cirrhosis than patients without cirrhosis. However, we found no significant difference in HCC occurrence risk following SVR between DAA and IFN therapies. CLINICAL TRIAL NUMBER: CRD42023473033.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA