Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Insect Sci ; 31(1): 119-133, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37287390

RESUMEN

RNA interference (RNAi) is a powerful tool that post-transcriptionally silences target genes in eukaryotic cells. However, silencing efficacy varies greatly among different insect species. Recently, we met with little success when attempting to knock down genes in the mirid bug Apolygus lucorum via dsRNA injection. The disappearance of double-stranded RNA (dsRNA) could be a potential factor that restricts RNAi efficiency. Here, we found that dsRNA can be degraded in midgut fluids, and a dsRNase of A. lucorum (AldsRNase) was identified and characterized. Sequence alignment indicated that its 6 key amino acid residues and the Mg2+ -binding site were similar to those of other insects' dsRNases. The signal peptide and endonuclease non-specific domain shared high sequence identity with the brown-winged green stinkbug Plautia stali dsRNase. AldsRNase showed high salivary gland and midgut expression and was continuously expressed through the whole life cycle, with peaks at the 4th instar ecdysis in the whole body. The purified AldsRNase protein obtained by heterologously expressed can rapidly degrade dsRNA. When comparing the substrate specificity of AldsRNase, 3 specific substrates (dsRNA, small interfering RNA, and dsDNA) were all degraded, and the most efficient degradation is dsRNA. Subsequently, immunofluorescence revealed that AldsRNase was expressed in the cytoplasm of midgut cells. Through cloning and functional study of AldsRNase, the enzyme activity and substrate specificity of the recombinant protein, as well as the subcellular localization of nuclease, the reason for the disappearance of dsRNA was explained, which was useful in improving RNAi efficiency in A. lucorum and related species.


Asunto(s)
Heterópteros , ARN Bicatenario , Animales , ARN Bicatenario/genética , Alineación de Secuencia , Interferencia de ARN , Insectos/genética , Clonación Molecular , Heterópteros/genética
2.
Front Physiol ; 13: 845087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250643

RESUMEN

Polyphagous Apolygus lucorum has become the dominant insect in Bacillus thuringiensis (Bt) cotton fields. Hormone 20-hydroxyecdysone (20E) regulates multiple insect development and physiology events. 20E responses are controlled by pathways triggered by phospholipase C (PLC)-associated proteins. However, 20E-modulated genes and related proteins that can be affected by PLC still remain unknown. Here, isobaric tag for relative and absolute quantitation (iTRAQ) and immunoblotting techniques were used to compare differentially expressed proteins (DEPs) in A. lucorum in response to the treatment of 20E and the PLC inhibitor U73122 as well as their combination. A total of 1,624 non-redundant proteins and 97, 248, 266 DEPs were identified in the 20E/control, U73122/control, and 20E + U73122/control groups, respectively. Only 8 DEPs, including pathogenesis-related protein 5-like, cuticle protein 19.8, trans-sialidase, larval cuticle protein A2B-like, cathepsin L1, hemolymph juvenile hormone-binding protein, ATP-dependent RNA helicase p62-like, and myosin-9 isoform X1, were detected in all three groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs were involved in diverse signaling pathways. The results were validated by immunoblotting, which highlighted the reliability of proteomics analysis. These findings provided novel insights into the function of PLC in 20E signaling pathway in A. lucorum.

3.
Talanta ; 111: 178-82, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23622542

RESUMEN

Cellular mechanical properties play an important role in disease diagnosis. Distinguishing cells based on their mechanical properties provides a potential method for label-free diagnosis. In this work, a convenient and low-cost microfluidic cytometer was developed to study cell mechanical properties and cell size based on the change of transmission intensity, using a low-cost commercial laser as a light source and two photodiodes as detectors. The cells pass through a narrow microchannel with a width smaller than the cell dimension, integrated in a polydimethylsiloxane chip, below which the laser is focused. The transit time of individual cells is measured by the time difference detected by two photodiodes. This device was used to study the difference in cell mechanical properties between HL60 cells treated with and without Cytochalasin D. Furthermore, it was also applied to distinguish cells with different diameters, HL60 cells and red blood cells, by measuring the transmission intensity.


Asunto(s)
Tamaño de la Célula , Técnicas Citológicas/métodos , Deformación Eritrocítica , Técnicas Analíticas Microfluídicas/métodos , Células Cultivadas , Citocalasina D/farmacología , Técnicas Citológicas/instrumentación , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Femenino , Células Precursoras de Granulocitos/efectos de los fármacos , Células Precursoras de Granulocitos/patología , Células HL-60 , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Reproducibilidad de los Resultados , Adulto Joven
4.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 12): o2249, 2008 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21581230

RESUMEN

The asymmetric unit of the title compound, C(15)H(13)ClN(2)S(2), contains two independent mol-ecules, which are linked into a pseudo-centrosymmetric dimer by inter-molecular N-H⋯S hydrogen bonds. The aromatic rings form dihedral angles of 67.06 (3) and 81.85 (2)° in the two independent mol-ecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA