Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(42): 28841-28847, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853815

RESUMEN

Adjusting the micro-environment of highly dispersive metals on carbon supports has been proved to be effective for achieving enhanced electrocatalysis performance. Herein, we delicately design a phosphorus-doped binary NiFe-nitrogen-carbon material (denoted as P-NiFe-NC), taking advantage of the coupling reaction between phenylphosphonamide (P dopant) and formamide (the carbon and nitrogen sources). The XPS N 1s fine scan reveals the strong interplay of N and P by the positively shifted binding energy of pyridinic N species after P incorporation, and the chemical state of Fe species is influenced accordingly. In addition, the P doping can enlarge the specific surface area and increase the meso/macroporosity of NiFe-NC, thus contributing to the enhancement of mass transfer inside the pores. The P-NiFe-NC sample exhibits favorable bifunctional oxygen electrocatalysis performance, rendering an ORR half-wave potential of 0.85 V and an OER potential of 1.69 V@10.0 mA cm-2, superior to those of P-free NiFe-NC. Assembled into Zn-air batteries, P-NiFe-NC delivers a high specific power of 161.36 mW cm-2 and stable charge/discharge for over 100 h (corresponding to 300 cycles).

2.
Nanoscale ; 15(39): 16039-16048, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37702625

RESUMEN

Transition-metal sulfides are an intriguing family of electrocatalysts, yet their water-splitting applications are severely hampered by uncontrollable phase reconstruction and unsatisfactory in-service durability. Herein, we developed an efficient method to construct nickel sulfide (NiS) nanoarrays on foam nickel (NF) while being protected by highly N-doped formamide-derived carbon (termed NiS-NC@NF). The NiS nanocrystals were transformed in situ from highly dispersed Ni-N-C deposited on NF, ensuring a strong coupling effect that tunes the surface properties of NiS nanocrystals via the in situ constructed NiS/N-doped carbon interface. Electrochemical measurements reveal that very low overpotentials of 88.0 and 170.0 mV (vs. RHE) are required to achieve a current density of 10.0 mA cm-2 for hydrogen and oxygen evolution, respectively. The highly N-doped carbon matrix additionally regulates the potential-driven reconstruction of NiS in a controlled extent. Remarkably, the water electrolyzer built with NiS-NC@NF as both anode and cathode delivers an extremely low cell voltage of 1.51 V to initiate water splitting in the alkaline medium.

3.
Carbohydr Polym ; 316: 121047, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321739

RESUMEN

Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A­selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, -2, -3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.


Asunto(s)
Cartílago Articular , Selenio , Ratas , Animales , Sulfatos de Condroitina/metabolismo , Selenio/metabolismo , Cartílago/metabolismo , Agrecanos/metabolismo , Condrocitos/metabolismo , Cartílago Articular/metabolismo
4.
Small ; 19(39): e2302475, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37231568

RESUMEN

Developing an inexpensive bifunctional electrocatalyst for overall water splitting is critical for acquiring scalable green hydrogen and thereby realizing carbon neutralization. Herein, an "all-in-one" method is developed for the fabrication of highly N-doped binary FeCo-phosphides (N-FeCoP) with hierarchical superstructure, this delicately designed synthesis route allows the following merits for benefiting water splitting electrocatalysis in alkaline, including high N/defect-doping for mediating the surface property of the as-made N-FeCoP, binary Fe and Co components exhibiting strong coupling interaction, and 3D hierarchical superstructure for shortening diffusion length and thereby improving reaction kinetics. Electrochemical measurements reveal that the N-FeCoP sample exhibits very low overpotentials for initiating the hydrogen and oxygen evolution reactions. Remarkably, overall water splitting can be promoted on N-FeCoP using a commercial primary Zn-MnO2 battery. The developed synthesis strategy may potentially inspire the preparation of other N-doped metal-based nanostructures for broad electrocatalysis.

5.
RSC Adv ; 12(45): 28929-28936, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320779

RESUMEN

Reducing the Ir consumption without compromising the catalytic performance for the oxygen evolution reaction (OER) is highly paramount to promote the extensive development of the environmentally-friendly solid polymer electrolyte water electrolysis (SPEWE) system. Herein, TiO2 is doped with N through facile NH3 gas treatment and innovatively employed to support IrO x nanoparticles towards acidic OER. N-doping action not only dramatically boosts the electrical conductivity and dispersing/anchoring effects of TiO2, but also effectively improves the electron-transfer procedure. As a result, the IrO x /N-TiO2 electrocatalyst exhibits prominent catalyst utilization, catalytic activity and stability. Specifically, the overpotential required to deliver 10 mA cm-2 is only 270 mV, and the mass activity climbs to 278.7 A gIr -1 @ 1.55 VRHE. Moreover, the single cell voltage is only 1.761 V @ 2.0 A cm-2 when adopting IrO x /N-TiO2 as the anode catalyst, which is 44 mV lower than that of the commercial IrO2 counterpart.

6.
ACS Omega ; 3(7): 8220-8225, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458959

RESUMEN

A facile fabrication strategy of transparent and upconversion photoluminescent nylon 6 (PA6) nanofiber mats was developed based on PA6 nanofiber mats, carboxylic acid-functionalized upconversion nanoparticles (UCNP-COOH), and poly(methyl methacrylate) (PMMA) solution. UCNP-COOH were prepared by a solvothermal method, followed by the ligand exchange process. The electrospinning method and the spin-coating process were employed to combine PA6 nanofiber mats with UCNP-COOH and PMMA to introduce upconversion photoluminescent properties and transparency into the nanocomposite mats, respectively. The prepared UCNP-COOH/PA6/PMMA nanofiber mats are transparent and exhibit green emission, which are similar to UCNP-COOH when they were excited under 980 nm laser. The upconversion luminescent intensity of the functional nanofiber mats can be tailored by adjusting the weight fraction of UCNP-COOH as fillers. This facile strategy can be readily used to other types of intriguing nanocomposites for diverse applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA