Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Neurol ; 24(1): 386, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39395952

RESUMEN

BACKGROUND: Cerebral venous sinus thrombosis (CVST) is a rare but potentially life-threatening subtype of stroke. Prompt and appropriate anticoagulation is crucial for improving the prognosis of CVST and preventing its recurrence. Identifying the underlying cause of CVST is decisive for guiding anticoagulant selection and determining treatment duration. CASE PRESENTATION: A 50-year-old man presented with a 35-day history of headache, nausea, vomiting, and blurred vision. Digital subtraction angiography performed at another facility revealed CVST. A contrast-enhanced black-blood MRI at our center confirmed the diagnosis, which was supported by a high intracranial pressure of 330mmH2O. Laboratory tests showed elevated leukocytes and platelet counts, raising suspicion of an underlying myeloproliferative neoplasms (MPNs). A bone marrow biopsy demonstrated increased megakaryocytes and granulocytes, and genetic testing identified the presence of the Janus kinase 2 V617F (JAK2 V617F) mutation, leading to a diagnosis of pre-primary myelofibrosis (pre-PMF). During hospitalization, anticoagulation with nadroparin calcium and fibrinolytic therapy were initiated. Upon discharge, rivaroxaban and aspirin were prescribed to prevent CVST recurrence and arterial thrombosis. CONCLUSION: This case highlights the importance of recognizing dynamic changes in routine blood tests that may link CVST to underlying hematological disorders. The JAK2 mutation is not only associated with MPNs but also increases the risk of thrombosis, including CVST. Further investigation is warranted to better understand the mechanisms by which JAK2 mutations contribute to thrombosis and to explore the potential benefits of JAK2 inhibitors in reducing this risk.


Asunto(s)
Janus Quinasa 2 , Mielofibrosis Primaria , Trombosis de los Senos Intracraneales , Humanos , Masculino , Janus Quinasa 2/genética , Persona de Mediana Edad , Trombosis de los Senos Intracraneales/genética , Trombosis de los Senos Intracraneales/tratamiento farmacológico , Trombosis de los Senos Intracraneales/diagnóstico , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/complicaciones , Mielofibrosis Primaria/diagnóstico , Mielofibrosis Primaria/tratamiento farmacológico , Mutación
2.
Front Pharmacol ; 15: 1436597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411062

RESUMEN

ß-nicotinamide mononucleotide (NMN) is a naturally occurring biologically active nucleotide widely present in organisms and an inherent substance in the human body. As a critical intermediate in synthesizing coenzyme I (NAD+), it widely participates in multiple biochemical reactions in the human body and is closely related to immunity, metabolism, and other factors. In recent years, NMN has rapidly developed and made significant progress in medicine, food, and healthcare. However, there is currently a lack of comprehensive reports on the research progress of NMN, as well as exploration and analysis of the current research achievements and progress of NMN. Therefore, this review is based on retrieving relevant research on NMN from multiple databases at home and abroad, with the retrieval time from database establishment to 20 May 2024. Subsequently, literature search, reading, key information extraction, organization, and summarization were conducted with the aim of providing a comprehensive and in-depth analysis of the characteristics, metabolic pathways, pharmacological effects, progress in human clinical trials, and wide applications of NMN in drug development and food applications. Furthermore, it offers personal insights into NMN's potential future developments and advancements to present the current development state and existing challenges comprehensively. Ultimately, this review aims to provide guidance and serve as a reference for the future application, innovation, and progression of NMN research.

3.
Int J Biol Macromol ; 278(Pt 2): 134754, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151848

RESUMEN

The development of photoresponsive shape memory materials based on the photothermal conversion properties of lignin and the low activation energy of the dynamic covalent borate bond is of great importance. In this paper, a kind of lignin-based vitrimer polymer (LBP) containing dynamic boronic ester bonds was prepared by a "sulfhydryl-epoxy" click reaction and etherification reaction. The results show that the rigid segment EP-EL (lignin-based epoxy resin) and BDB (2,2'-(1,4-phenylene)-bis-[4-mercapto-1,3,2-dioxaneborane]) with benzene ring structure can impart tensile strength (20.8 MPa) to the LBP, while the flexible segment PEG imparts good elongation at break (15 %). The dynamic binding and dissociation exchange mechanism of the boronic ester bonds enables LBP to exhibit thermal remodelling properties (up to 36.2 %) and water-assisted self-healing properties at room temperature (up to 49.0 %). In addition, LBP exhibits excellent thermal and light-responsive shape memory properties due to its own photothermal conversion performance (photothermal conversion efficiency up to 18.2 %) and the dynamic boronic ester bond thermal activation bond exchange mechanism. The insulating properties of LBP make it suitable for use in high temperature protection circuit devices and light-responsive circuit devices. This study provides new insights into the design and application of Vitrimer and photoresponsive shape memory polymers, and also offers a new avenue for high-value utilization of lignin.


Asunto(s)
Ésteres , Lignina , Lignina/química , Ésteres/química , Boratos/química , Temperatura , Polímeros/química , Resistencia a la Tracción , Luz
4.
Artículo en Inglés | MEDLINE | ID: mdl-39210726

RESUMEN

Programmed death-ligand 1 (PD-L1) expression is related to the efficacy and prognosis in triple-negative breast cancer. This study employed an indirect labeling method to synthesize [125I]PI-Atezolizumab. The in vitro stability of [125I]PI-Atezolizumab was assessed through incubation in phosphate buffered saline and fetal bovine serum, revealing sustained stability. Specific binding of [125I]PI-Atezolizumab to MDA-MB-231 cells expressing humanized PD-L1 was assessed through in vitro incubation, yielding a Kd value comparable to that of Atezolizumab. This suggests that the labeling process did not compromise the affinity of the Atezolizumab to PD-L1. Subsequently, pharmacokinetic studies were conducted in normal mice and biodistribution experiments in tumor-bearing mice. A comparison of the biodistribution results between [125I]PI-Atezolizumab and 125I-labeled Atezolizumab indicated better in vivo stability for the former. Single photon emission computed tomography (SPECT)/CT imaging further confirmed the targeted specificity of [125I]PI-Atezolizumab for PD-L1 in MDA-MB-231 xenografts, which were validated by immunohistochemistry staining. This research underscores the utility of [125I]PI-Atezolizumab, prepared via indirect labeling, for monitoring PD-L1 in triple-negative breast cancer models.

5.
Biomed Pharmacother ; 177: 117124, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991304

RESUMEN

BACKGROUND: Remote ischemic conditioning (RIC) is considered a promising non-pharmacological therapeutic strategy to mitigate ischemic injury. Although the precise mechanisms of RIC's protective effects remain elusive, existing data suggest that exosomes contribute significantly to these processes through cell-to-cell communication OBJECTIVE: This review aims to elucidate the role of exosomes in RIC-mediated multi-organ protection. METHODS: We systematically searched multiple databases through October 2023 for preclinical studies evaluating the effect of exosomes in ischemic models using RIC procedures. Key outcomes, such as improved organ function and reduced infarct size, were recorded. Articles were selected and data were extracted by independent pairs of reviewers. FINDINGS: A total of 16 relevant studies were identified in this review, showing that circulating exosomes derived from the plasma of RIC-treated animals exhibited protective effects akin to those of the RIC procedure itself. Exosome concentrations were measured in eight studies, six of which reported significant increases in the RIC group. Additional findings indicated that RIC might primarily modulate the expression of miRNAs and bioactive molecules delivered by exosomes, rather than directly altering circulating exosome levels. Notably, the expression of 11 distinct exosomal miRNAs was altered after RIC intervention, potentially involving multiple pathways. CONCLUSION: Exosomes appear to play a pivotal role in the protective effects induced by RIC. Clarifying their function in RIC under different pathological situations represents a grand challenge for future research.


Asunto(s)
Exosomas , Precondicionamiento Isquémico , Exosomas/metabolismo , Animales , Precondicionamiento Isquémico/métodos , Humanos , MicroARNs/metabolismo , MicroARNs/genética , MicroARNs/sangre , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo
6.
Cell Commun Signal ; 22(1): 369, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039539

RESUMEN

Stroke is a leading cause of mortality and long-term disability globally, with acute ischemic stroke (AIS) being the most common subtype. Despite significant advances in reperfusion therapies, their limited time window and associated risks underscore the necessity for novel treatment strategies. Stem cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic approach due to their ability to modulate the post-stroke microenvironment and facilitate neuroprotection and neurorestoration. This review synthesizes current research on the therapeutic potential of stem cell-derived EVs in AIS, focusing on their origin, biogenesis, mechanisms of action, and strategies for enhancing their targeting capacity and therapeutic efficacy. Additionally, we explore innovative combination therapies and discuss both the challenges and prospects of EV-based treatments. Our findings reveal that stem cell-derived EVs exhibit diverse therapeutic effects in AIS, such as promoting neuronal survival, diminishing neuroinflammation, protecting the blood-brain barrier, and enhancing angiogenesis and neurogenesis. Various strategies, including targeting modifications and cargo modifications, have been developed to improve the efficacy of EVs. Combining EVs with other treatments, such as reperfusion therapy, stem cell transplantation, nanomedicine, and gut microbiome modulation, holds great promise for improving stroke outcomes. However, challenges such as the heterogeneity of EVs and the need for standardized protocols for EV production and quality control remain to be addressed. Stem cell-derived EVs represent a novel therapeutic avenue for AIS, offering the potential to address the limitations of current treatments. Further research is needed to optimize EV-based therapies and translate their benefits to clinical practice, with an emphasis on ensuring safety, overcoming regulatory hurdles, and enhancing the specificity and efficacy of EV delivery to target tissues.


Asunto(s)
Vesículas Extracelulares , Células Madre , Accidente Cerebrovascular , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Células Madre/citología , Accidente Cerebrovascular/terapia , Trasplante de Células Madre/métodos
7.
EJNMMI Radiopharm Chem ; 9(1): 56, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083135

RESUMEN

BACKGROUND: Currently, the synthesis pathway of metal nuclide-labeled radiopharmaceuticals is mainly divided into two steps: first, connecting the chelator with the target molecule, and second, labeling the metal nuclide to the chelator. However, the second step of the reaction to label the metal nuclide requires high temperature (90-100 °C), which tends to denature and inactivate the target molecule, leading to loss of biological activities, especially the targeting ability. A feasible solution may be the click chemistry labeling method, which consists of reacting a metal nuclide with a chelating agent to generate an intermediate and then synthesizing a radiopharmaceutical agent via the click chemistry intermediate and the target molecule-alkyne compound. In this study, through the click chemistry of 177Lu-DOTA-N3 with prostate-specific membrane antigen (PSMA)-alkyne compound, 177Lu-labeled PSMA-targeted molecular probe was synthesized and evaluated for its potential to be cleared from the bloodstream and rapidly distributed to tissues and organs, achieving a high target/non-target ratio. 177Lu-PSMA-617 was utilized as an analogue for comparison in terms of synthesizing efficiency and PSMA-targeting ability. RESULTS: A novel 177Lu-labeled PSMA radioligand was successfully synthesized through the click chemistry of 177Lu-DOTA-N3 with PSMA-alkyne compound, and abbreviated as 177Lu-DOTA-CC-PSMA, achieving a radiochemical yield of 77.07% ± 0.03% (n = 6) and a radiochemical purity of 97.62% ± 1.49% (n = 6) when purified by SepPak C18 column. Notably, 177Lu-DOTA-CC-PSMA was characterized as a hydrophilic compound that exhibited stability at room temperature and commendable pharmacokinetic properties, such as the superior uptake (19.75 ± 3.02%ID/g at 0.5 h) and retention (9.14 ± 3.16%ID/g at 24 h) within xenografts of 22Rv1 tumor-bearing mice. SPECT/CT imaging indicated that radioactivity in both kidneys and bladder was essentially eliminated after 24 h, while 177Lu-DOTA-CC-PSMA was further enriched and retained in PSMA-expressing tumors, resulting in the high target/non-target ratio. CONCLUSION: This study demonstrated the potential of click chemistry to unify the synthesis of metal radiopharmaceuticals, and 177Lu-DOTA-CC-PSMA was found for rapid clearance and appropriate chemical stability as a PSMA-targeted radioligand.

8.
Br J Cancer ; 131(4): 655-667, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951697

RESUMEN

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Línea Celular Tumoral , Apoptosis , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Femenino
9.
Neurosci Lett ; 836: 137861, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-38849102

RESUMEN

The continued influence effect of misinformation (CIEM) can negatively affect individuals' reasoning and judgment processes. This research aims to enhance the correction of misinformation and foster rational judgement by investigating the internal brain mechanisms involved in the processing of the CIEM through the use of task-based functional magnetic resonance imaging combined with Granger causality analysis. Our findings demonstrate notable effective interactions in varying directions between the left inferior frontal gyrus and middle temporal gyrus during the encoding phase, and between the right anterior cingulate gyrus and left inferior occipital gyrus in the retrieval phase. These insights elucidate the roles of mental model updating and retrieval failure in the processing of CIEM, offering more granular evidence to support the differentiation in processing phases.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto Joven , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Comunicación , Juicio/fisiología , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen
10.
Mutat Res ; 829: 111870, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944932

RESUMEN

Reactive aldehydes, for instance, formaldehyde and acetaldehyde, are important endogenous or environmental mutagens by virtue of their abilities to produce a DNA lesion called interstrand crosslink (ICL). Aldehyde-metabolizing enzymes such as aldehyde dehydrogenases (ALDHs) and the Fanconi anemia (FA) pathway constitute the main defense lines against aldehyde-induced genotoxicity. Biallelic mutations of genes in any one of the FA complementation groups can impair the ICL repair mechanism and cause FA, a heterogeneous disorder manifested by bone marrow failure (BMF), congenital abnormality and a strong predisposition to cancer. The defective ALDH2 polymorphism rs671 (ALDH2*2) is a known risk and prognostic factor for alcohol drinking-associated cancers. Recent studies suggest that it also promotes BMF and cancer development in FA, and its combination with alcohol dehydrogenase 5 (ADH5) mutations causes aldehyde degradation deficiency syndrome (ADDS), also known by its symptoms as aplastic anemia, mental retardation, and dwarfism syndrome. ALDH2*2 and another pathogenic variant in the alcohol-metabolizing pathway, ADH1B1*1, is prevalent among East Asians. Also, other ALDH2 genotypes with disease-modifying potentials have lately been identified in different populations. Therefore, it would be appropriate to summarize current knowledge of genotoxic aldehydes and defense mechanisms against them to shed new light on the pathogenic effects of ALDH2 variants together with other genetic and environmental modifiers on cancer and inherited BMF syndromes. Lastly, we also presented potential treatment strategies for FA, ADDS and cancer based on the manipulation of aldehyde-induced genotoxicity.

11.
Psych J ; 13(3): 398-406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830603

RESUMEN

Facial expressions in infants have been noted to create a spatial attention bias when compared with adult faces. Yet, there is limited understanding of how adults perceive the timing of infant facial expressions. To investigate this, we used both infant and adult facial expressions in a temporal bisection task. In Experiment 1, we compared duration judgments of neutral infant and adult faces. The results revealed that participants felt that neutral infant faces lasted for a shorter time than neutral adult faces, independent of participant sex. Experiment 2 employed sad (crying) facial expressions. Here, the female participants perceived that the infants' faces were displayed for a longer duration than the adults' faces, whereas this distinction was not evident among the male participants. These findings highlight the influence of the babyface schema on time perception, nuanced by emotional context and sex-based individual variances.


Asunto(s)
Llanto , Expresión Facial , Percepción del Tiempo , Humanos , Femenino , Masculino , Adulto , Lactante , Reconocimiento Facial/fisiología , Emociones , Atención , Factores Sexuales
12.
Nutrients ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892631

RESUMEN

This study investigated the effect of astragalus polysaccharide (APS, an ingredient with hypoglycemic function in a traditional Chinese herbal medicine) on gut microbiota and metabolites of type 2 diabetes mellitus (T2DM) patients using a simulated fermentation model in vitro. The main components of APS were isolated, purified, and structure characterized. APS fermentation was found to increase the abundance of Lactobacillus and Bifidobacterium and decrease the Escherichia-Shigella level in the fecal microbiota of T2DM patients. Apart from increasing propionic acid, APS also caused an increase in all-trans-retinoic acid and thiamine (both have antioxidant properties), with their enrichment in the KEGG pathway associated with thiamine metabolism, etc. Notably, APS could also enhance fecal antioxidant properties. Correlation analysis confirmed a significant positive correlation of Lactobacillus with thiamine and DPPH-clearance rate, suggesting the antioxidant activity of APS was related to its ability to enrich some specific bacteria and upregulate their metabolites.


Asunto(s)
Antioxidantes , Planta del Astrágalo , Diabetes Mellitus Tipo 2 , Heces , Fermentación , Microbioma Gastrointestinal , Polisacáridos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polisacáridos/farmacología , Planta del Astrágalo/química , Heces/microbiología , Antioxidantes/farmacología , Masculino , Femenino , Persona de Mediana Edad , Tiamina/farmacología , Tiamina/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/efectos de los fármacos , Lactobacillus/metabolismo , Lactobacillus/efectos de los fármacos , Hipoglucemiantes/farmacología
13.
ChemSusChem ; : e202400997, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923349

RESUMEN

The design and construction of highly efficient electrocatalysts for overall water splitting and urea electrolysis are significantly important for promoting energy conversion and realizing green hydrogen production. In this work, we constructed a multi-phase heterojunction through a simple hydrothermal and phosphorization process. The P-doped NiFe2O4 (P-NiFe2O4) nanoparticles were uniformly anchored on the bamboo-like N-doped carbon nanotubes (NCNTs) grown via a NiFe-alloy autocatalysis. The electronic structure and coordination environment of active species were optimized by the synergistic action of P doping, well-dispersed ultrafine NiFe2O4, and NCNTs matrix with good conductivity, enhancing their quantity and activity for electrocatalysis. Consequently, the P-NiFe2O4/NCNTs/NiFe exhibits excellent HER and OER activities with an overpotential of 111 and 266 mV at 10 mA cm-2 in 1 M KOH, respectively. The symmetrical overall water-splitting cell using P-NiFe2O4/NCNTs/NiFe as both anode and cathode delivers 10 mA cm-2 at a voltage of 1.604 V in 1 M KOH. Notably, the two-electrode cell requires a low voltage of 1.467 V to achieve a current density of 10 mA cm-2 in 1 M KOH solution with 0.6 M urea. This designed catalysts display outstanding reaction kinetics and catalytic stability. This work provides useful guidance for applying transition metal-based catalysts for hydrogen production.

14.
Neurol Res ; 46(8): 735-742, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38695379

RESUMEN

OBJECTIVES: Observational studies have suggested that SARS-CoV-2 infection may increase the burden of cerebral small vessel disease (CSVD). This study aims to explore the causal correlation between COVID-19 and the imaging markers of CSVD using Mendelian randomization (MR) methods. METHODS: Summary-level genome-wide association study (GWAS) statistics for COVID-19 susceptibility, hospitalization, and severity were utilized as proxies for exposure. Large-scale meta-analysis GWAS data on three neuroimaging markers of white matter hyperintensity, lacunar stroke, and brain microbleeds, were employed as outcomes. Our primary MR analysis employed the inverse variance weighted (IVW) approach, supplemented by MR-Egger, weighted median, and MR-PRESSO methods. We also conducted multivariable MR analysis to address confounding bias and validate the robustness of the established causal estimates. Comprehensive sensitivity analyses included Cochran's Q test, Egger-intercept analysis, MR-PRESSO, and leave-one-out analysis. RESULTS: The MR analysis revealed a significant causal correlation between the severity of COVID-19 and an increased risk of lacunar stroke, as demonstrated by the IVW method (ORivw = 1.08, 95% CI: 1.03-1.16, pivw = 0.005, FDR = 0.047). Nevertheless, no causal correlations were observed between COVID-19 susceptibility or hospitalization and any CSVD imaging markers. The robustness and stability of these findings were further confirmed by multivariable MR analysis and comprehensive sensitivity analyses. DISCUSSION: This study provides compelling evidence of a potential causal effect of severe COVID-19 on the incidence of lacunar stroke, which may bring fresh insights into the understanding of the comorbidity between COVID-19 and CSVD.


Asunto(s)
COVID-19 , Enfermedades de los Pequeños Vasos Cerebrales , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , COVID-19/diagnóstico por imagen , COVID-19/complicaciones , Análisis de la Aleatorización Mendeliana/métodos , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Neuroimagen/métodos , Accidente Vascular Cerebral Lacunar/diagnóstico por imagen , Accidente Vascular Cerebral Lacunar/genética , Accidente Vascular Cerebral Lacunar/epidemiología
15.
Langmuir ; 40(22): 11571-11581, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38779964

RESUMEN

3D aerogels incorporating functionalized reduced graphene oxide (SUL/rGO) were prepared as a hydrothermal method utilizing graphene oxide (GO) and a sulfonyldibenzene derivative (SUL) as raw materials. The aromatic compound SUL, which contains hydroxyl and sulfonyl groups, was bonded to reduced graphene oxide (rGO) through π-π connections. The obtained composite material exhibited porosity within its structure with improved hydrophilicity, along with excellent electrochemical characteristics. This improvement was ascribed to the specific rGO structure, as well as the pseudocapacitance inherent in SUL, both of which synergistically contribute to improvement in the characteristics of the prepared electrode materials. Also, an analysis was performed employing density functional theory from which the density of states and adsorption energy of SUL on the surface of rGO were computed to further investigate the charge storage process within the prepared composite. The prepared SUL/rGO-2 electrode exhibited the highest specific capacitance value of 388 F/g at a current density equal to 1 A/g. The constructed symmetrical supercapacitor, SUL/rGO-2//SUL/rGO-2, attained an energy density value of 14.55 Wh/kg at a power density equal to 350 W/kg with an exceptional galvanostatic charge-discharge (GCD) cyclic stability equal to 91% following 10 000 cycles. Therefore, this review presents a novel functionalized graphene-based material incorporating hydroxyl and sulfonyl groups, which holds promise in future energy storage applications.

16.
Cell Death Differ ; 31(9): 1140-1156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38816578

RESUMEN

There is a lack of effective treatments to overcome resistance to EGFR-TKIs in EGFR mutant tumors. A deeper understanding of resistance mechanisms can provide insights into reducing or eliminating resistance, and can potentially deliver targeted treatment measures to overcome resistance. Here, we identified that the dynamic changes of the tumor immune environment were important extrinsic factors driving tumor resistance to EGFR-TKIs in EGFR mutant cell lines and syngeneic tumor-bearing mice. Our results demonstrate that the acquired resistance to EGFR-TKIs is accompanied by aberrant expression of PD-L2, leading a dynamic shift from an initially favorable tumor immune environment to an immunosuppressive phenotype. PD-L2 expression significantly affected EGFR mutant cell apoptosis that depended on the proportion and function of CD8+ T cells in the tumor immune environment. Combined with single-cell sequencing and experimental results, we demonstrated that PD-L2 specifically inhibited the proliferation of CD8+ T cells and the secretion of granzyme B and perforin, leading to reduced apoptosis mediated by CD8+ T cells and enhanced immune escape of tumor cells, which drives EGFR-TKIs resistance. Importantly, we have identified a potent natural small-molecule inhibitor of PD-L2, zinc undecylenate. In vitro, it selectively and potently blocks the PD-L2/PD-1 interaction. In vivo, it abolishes the suppressive effect of the PD-L2-overexpressing tumor immune microenvironment by blocking PD-L2/PD-1 signaling. Moreover, the combination of zinc undecylenate and EGFR-TKIs can synergistically reverse tumor resistance, which is dependent on CD8+ T cells mediating apoptosis. Our study uncovers the PD-L2/PD-1 signaling pathway as a driving factor to mediate EGFR-TKIs resistance, and identifies a new naturally-derived agent to reverse EGFR-TKIs resistance.


Asunto(s)
Resistencia a Antineoplásicos , Proteína 2 Ligando de Muerte Celular Programada 1 , Microambiente Tumoral , Animales , Femenino , Humanos , Ratones , Apoptosis/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Terapia Molecular Dirigida , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Microambiente Tumoral/efectos de los fármacos
17.
CNS Neurosci Ther ; 30(5): e14759, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757378

RESUMEN

AIMS: The causal relationship between sarcopenia-related traits and ischemic stroke (IS) remains poorly understood. This study aimed to explore the causal impact of sarcopenia-related traits on IS and to identify key mediators of this association. METHODS: We conducted univariable, multivariable two-sample, and two-step Mendelian randomization (MR) analyses using genome-wide association study (GWAS) data. This included data for appendicular lean mass (ALM), hand grip strength (HGS), and usual walking pace (UWP) from the UK Biobank, and IS data from the MEGASTROKE consortium. Additionally, 21 candidate mediators were analyzed based on their respective GWAS data sets. RESULTS: Each 1-SD increase in genetically proxied ALM was associated with a 7.5% reduction in the risk of IS (95% CI: 0.879-0.974), and this correlation remained after controlling for levels of physical activity and adiposity-related indices. Two-step MR identified that six mediators partially mediated the protective effect of higher ALM on IS, with the most significant being coronary heart disease (CHD, mediating proportion: 39.94%), followed by systolic blood pressure (36.51%), hypertension (23.87%), diastolic blood pressure (15.39%), type-2 diabetes mellitus (T2DM, 12.71%), and low-density lipoprotein cholesterol (7.97%). CONCLUSION: Our study revealed a causal protective effect of higher ALM on IS, independent of physical activity and adiposity-related indices. Moreover, we found that higher ALM could reduce susceptibility to IS partially by lowering the risk of vascular risk factors, including CHD, hypertension, T2DM, and hyperlipidemia. In brief, we elucidated another modifiable factor for IS and implied that maintaining sufficient muscle mass may reduce the risk of such disease.


Asunto(s)
Accidente Cerebrovascular Isquémico , Análisis de la Aleatorización Mendeliana , Análisis Multivariante , Sarcopenia , Femenino , Humanos , Masculino , Presión Sanguínea , LDL-Colesterol/sangre , LDL-Colesterol/metabolismo , Factores de Confusión Epidemiológicos , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/metabolismo , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Fuerza de la Mano , Hipertensión/epidemiología , Hipertensión/metabolismo , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/prevención & control , Fenotipo , Polimorfismo de Nucleótido Simple , Sarcopenia/epidemiología , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/fisiopatología , Sarcopenia/prevención & control , Biobanco del Reino Unido , Velocidad al Caminar
18.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814866

RESUMEN

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Transformación Celular Neoplásica , Clorhidrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ratones , Clorhidrato de Erlotinib/farmacología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Vía de Señalización Wnt/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Transcripción Genética , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina
19.
J Ethnopharmacol ; 325: 117887, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346525

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba, as the most widely available medicinal plant worldwide, has been frequently utilized for treat cardiovascular, cerebrovascular, diabetic and other diseases. Due to its distinct pharmacological effects, it has been broadly applications in pharmaceuticals, health products, dietary supplements, and so on. Ginkgolide C (GC), a prominent extract of Ginkgo biloba, possesses potential in anti-inflammatory and anti-oxidant efficacy. AIMS OF THE STUDY: To determine whether GC mitigated the progressive degeneration of articular cartilage in a Monosodium Iodoacetate (MIA)-induced osteoarthritis (OA) rat model by inhibiting the activation of the NLRP3 inflammasome, and the specific underlying mechanisms. MATERIALS AND METHODS: In vivo, an OA rat model was established by intra-articular injection of MIA. The protective effect of GC (10 mg/kg) on articular cartilage was evaluated. Application of ATDC5 cells to elucidate the mechanism of the protective effect of GC on articular cartilage. Specifically, the expression levels of molecules associated with cartilage ECM degrading enzymes, OS, ERS, and NLRP3 inflammasome activation were analyzed. RESULTS: In vivo, GC ameliorated MIA-induced OA rat joint pain, and exhibited remarkable anti-inflammatory and anti- ECM degradation effects via inhibition of the activation of NLRP3 inflammasome, the release of inflammatory factors, and the expression of matrix-degrading enzymes in cartilage. Mechanically, GC inhibited the activation of NLRP3 inflammasome by restraining ROS-mediated p-IRE1α and activating Nrf2/NQO1 signal path, thereby alleviating OA. The ROS scavenger NAC was as effective as GC in reducing ROS production and inhibiting the activation of NLRP3 inflammasome. CONCLUSIONS: GC have exerted chondroprotective effects by inhibiting the activation of NLRP3 inflammasome.


Asunto(s)
Cartílago Articular , Ginkgólidos , Lactonas , Osteoartritis , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Condrocitos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Ácido Yodoacético/efectos adversos , Ácido Yodoacético/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo
20.
Cell Rep ; 43(2): 113714, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306271

RESUMEN

Drug resistance is the leading problem in non-small-cell lung cancer (NSCLC) therapy. The contribution of histone methylation in mediating malignant phenotypes of NSCLC is well known. However, the role of histone methylation in NSCLC drug-resistance mechanisms remains unclear. Here, our data show that EZH2 and G9a, two histone methyltransferases, are involved in the drug resistance of NSCLC. Gene manipulation results indicate that the combination of EZH2 and G9a promotes tumor growth and mediates drug resistance in a complementary manner. Importantly, clinical study demonstrates that co-expression of both enzymes predicts a poor outcome in patients with NSCLC. Mechanistically, G9a and EZH2 interact and promote the silencing of the tumor-suppressor gene SMAD4, activating the ERK/c-Myc signaling pathway. Finally, SU08, a compound targeting both EZH2 and G9a, is demonstrated to sensitize resistant cells to therapeutic drugs by regulating the SMAD4/ERK/c-Myc signaling axis. These findings uncover the resistance mechanism and a strategy for reversing NSCLC drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Transducción de Señal , Proteínas Proto-Oncogénicas c-myc/genética , Histonas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteína Smad4/genética , Proteína Potenciadora del Homólogo Zeste 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA