RESUMEN
Vitellogenin (Vg) is an important factor that impacts oocyte maturation, egg formation and embryonic development in Arthropoda. Two orthologs of Vg gene were obtained from the genome of Phytoseiulus persimilis and termed as PpVg1 and PpVg2. Both orthologs belong to the large lipid transfer protein superfamily. The expression of PpVg1 and PpVg2 was low in immatures and male adults, and increased rapidly in female adults after mating, and reached a peak before the first egg was laid (168× and 20.5× the level in virgin females, respectively). When PpVg1 and PpVg2 were interfered with dsRNA, the relative expression decreased by 81.0 and 30.9%, respectively, and 7.8 and 31.4% interfered individuals died within 24 h. Among surviving individuals, ca. 51.1 and 44.8% are infertile. Factors that might be related to expression of Vg genes are also discussed.
Asunto(s)
Ácaros , Vitelogeninas , Animales , Femenino , Masculino , Reproducción , Vitelogeninas/genética , Vitelogeninas/metabolismoRESUMEN
Phytoseiulus persimilis is one of the most important biological control agents of spider mites. Multiple studies have been conducted on factors affecting its reproduction, but limited research on related molecular mechanisms has been carried out. In this study, RNA interference of three genes, ribosomal protein L11 (RpL11), ribosomal protein S2 (RpS2), and transformer-2 (tra-2), to newly emerged females were performed through oral delivery of double-stranded RNA, and knockdown of target genes was verified using qRT-PCR analysis. When RpL11 or RpS2 was interfered, 42 and 30% P. persimilis individuals either laid no egg or had no egg hatched, whereas the remaining females had their oviposition duration reduced by 31.8 and 49.9%, fecundity reduced by 48.1 and 67.8%, and egg hatching rate reduced by 20.4 and 22.4%, respectively. In addition, offspring sex ratios were significantly male biased especially at low fecundities. When tra-2 was interfered, no significant difference in fecundity was detected, but egg hatching rate reduced by 30.6%. This study verified the possibility of RNA interference in Phytoseiidae through oral delivery, and indicated that RpL11 and RpS2 are involved in egg formation, whereas tra-2 is involved in embryo development in P. persimilis. Phytoseiid mites have different sex determination pathways compared to insects. The present study provides data and evidence at molecular biological level for future research on reproduction and sex determination of phytoseiid mites.