Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Integr Neurosci ; 23(10): 193, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39473151

RESUMEN

Intracranial vascular-related diseases are a common occurrence in neurosurgery. They have complex and diverse pathogeneses; further, their diagnosis and treatment remain unclear. Three-dimensional image post-processing technology is an emerging technology that involves converting a brain image scan into a digital model using image post-processing software, thus establishing a 3D view of the region of interest. Three-dimensional visualisation of the brains of patients with cerebrovascular diseases can allow a more intuitive examination of the local anatomy of the lesion as well as the adjacency between the lesion and peripheral nerves, brain tissue, and skull bones. Subsequently, this informs pre-operative planning, allows more accurate diagnosis of cerebrovascular diseases, and improves the safety of surgical treatment. This review summarised the current literature regarding cerebrovascular diseases and the application of 3D image post-processing technology in different cerebrovascular diseases.


Asunto(s)
Trastornos Cerebrovasculares , Imagenología Tridimensional , Humanos , Trastornos Cerebrovasculares/diagnóstico por imagen , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Neuroimagen/normas , Procesamiento de Imagen Asistido por Computador/métodos
2.
Int J Oncol ; 64(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577941

RESUMEN

Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 in vitro could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G2/M phase, thus inhibiting cell proliferation. Furthermore, in vivo experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Ratones , Humanos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Glioma/patología , Factores de Transcripción/genética , Neoplasias Encefálicas/patología , Proliferación Celular/genética , Apoptosis/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Transposasas/genética , Transposasas/metabolismo
3.
Transl Oncol ; 36: 101739, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544033

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant type of glioma. GBM tumors grow rapidly, have a high degree of malignancy, and are characterized by a fast disease progression. Unfortunately, there is a lack of effective treatments. An effective strategy for the treatment of GBM would be to identify key biomarkers correlating with the occurrence and progression of GBM and developing these biomarkers into therapeutic targets. METHOD AND RESULTS: In this study, using integrated bioinformatics analysis, we identified differentially expressed genes (DEGs), including 130 genes that were upregulated in GBM compared to normal brain tissue, and 128 genes that were downregulated in GBM. Based on Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, these genes were associated with regulation of tumor cell adhesion, differentiation, morphology in GBM and were mainly enriched in Complement and coagulation cascades pathway. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct a Protein-Protein Interaction network. Ten hub genes were identified, including FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2, all of which were significantly upregulated in GBM, these results were confirmed by oncomine database exploration. Alteration analysis of hub genes found that patients with alteration in at least one of the hub genes showed shorter median survival times (p = 0.013) and shorter median disease-free survival times (p = 2.488E-3) than patients without alterations in any of the hub genes. Multiple tests for survival analysis showed that among individual hub genes only expression of LOX was correlated with patient survival (P < 0.05).GDS4467 data set was used to analyze the expression of LOX in gliomas with different degrees of malignancy, and it was found that the expression level of LOX was positively correlated with the malignant degree of gliomas.By analyzing GDS 4535 data set showed that the expression level of LOX was positively correlated with the differentiation degree of GBM cells CONCLUSION: This research suggests that FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2 are key genes in GBM. However, only LOX is correlated with patient survival and promotes glioblastoma cell differentiation and tumor recurrence. LOX may be a candidate prognostic biomarker and potential therapeutic target for GBM.

4.
Front Neurol ; 14: 1050619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908600

RESUMEN

Objective: To evaluate the efficacy and safety of flow diverters (FD) in the treatment of vertebral artery dissecting aneurysm (VADA). Methods: A total of 16 patients with 17 unruptured VADAs treated with FD from January 2017 to May 2021 were included. Data of clinical outcomes and radiographic examination were collected and assessed by the modified Rankin Scale (mRS) and O'Kelly-Marotta (OKM) grading scale. Results: All patients were treated with a single FD. No perioperative complications occurred. The mean age was 55.1 years old. The mean size of the aneurysm was 10.4 mm. All patients had a favorable occlusion (OKM D + C3) result and the complete occlusion rate in the 6th month was 66.7% (OKM D). The mean clinical follow-up time was 7.8 months, and all patients had a good clinical outcome (mRS = 0). No procedure-related complication occurred at the last follow-up time. Conclusion: FD is an effective and safe tool for treating unruptured VADA. Long-term prospective studies with a large sample are still needed to confirm these findings in the future.

5.
Front Neurol ; 13: 971664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452166

RESUMEN

Introduction: As a common endovascular treatment for intracranial aneurysms, the pipeline embolization device (PED) is considered a standard treatment option, especially for large, giant, wide-necked, or dissecting aneurysms. A layer of phosphorylcholine biocompatible polymer added to the surface of the PED can substantially improve this technology. This PED with shield technology (pipeline shield) is relatively novel; its early technical success and safety have been reported. We conducted a systematic literature review with the aim of evaluating the efficacy and safety of the pipeline shield. Methods: We searched the PubMed, Embase, and Cochrane databases, following the preferred reporting items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Results: We selected five prospective and two retrospective studies for review. A total of 572 aneurysms were included; of these, 506 (88.5%) were unruptured. The antiplatelet regimens were heterogeneous. The rate of perioperative and postoperative complications was 11.1% [95% confidence interval (CI): 6.5-18.9%]. The adequate occlusion rate at 6 months was 73.9% (95% CI: 69.1-78.7%). The adequate occlusion rate of more than 12 months was 80.9% (95% CI: 75.1-86.1%). The mortality rate was 0.7% (95% CI: 0.2-1.5%). Subgroup analyses showed that aneurysm rupture status had no effect on aneurysm occlusion rate, patient morbidity, or mortality. Conclusion: This review demonstrates the safety and efficacy of the pipeline shield for treating intracranial aneurysms. However, direct comparisons of the pipeline shield with other flow diverters are needed to better understand the relative safety and effectiveness of different devices.

6.
Front Mol Neurosci ; 15: 850849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493318

RESUMEN

Stroke is a common and devastating disease with an escalating prevalence worldwide. The known secondary injuries after stroke include cell death, neuroinflammation, blood-brain barrier disruption, oxidative stress, iron dysregulation, and neurovascular unit dysfunction. Lipocalin-2 (LCN-2) is a neutrophil gelatinase-associated protein that influences diverse cellular processes during a stroke. The role of LCN-2 has been widely recognized in the peripheral system; however, recent findings have revealed that there are links between LCN-2 and secondary injury and diseases in the central nervous system. Novel roles of LCN-2 in neurons, microglia, astrocytes, and endothelial cells have also been demonstrated. Here, we review the evidence on the regulatory roles of LCN-2 in secondary injuries following a stroke from various perspectives and the pathological mechanisms involved in the modulation of stroke. Overall, our review suggests that LCN-2 is a promising target to promote a better understanding of the neuropathology of stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA