RESUMEN
Although the influence of microplastics (MPs) in different soil environments has been investigated, their effects on the physiochemical properties and chemical speciation of heavy metals in yellow-brown soil remains unknown. This study aimed to determine the effects of various concentrations of linear low-density polyethylene (LLDPE), polyamide (PA), polyurethane (PU), polystyrene (PS), and low-density polyethylene (LDPE) MPs on the yellow-brown soil environment and chemical speciation of the heavy metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). MPs influenced the physicochemical properties and chemical speciation of heavy metals in yellow-brown soil. The physicochemical properties of yellow-brown soil can be altered by changing the concentrations of LDPE MP. The relationship between changes in field capacity (FC) and LDPE concentrations was approximately linear. The physiochemical properties of yellow-brown soil containing added PA, PU, and LDPE MPs were substantially improved (control vs. MPs): FC, 39 % vs. 42.50 % for PU, cation exchange capacity (CEC) 45.77, 56.65, and 57.44 cmol.kg-1 for PA, PU, and LDPE respectively, and organic matter (OM) content, 40.16 vs. 51.68 g.kg-1 for PA. The LLDPE and PU MPs also simultaneously affected the chemical speciation of heavy metals in yellow-brown soil. The LLDPE MPs increased the acid-soluble (45.17-54.67 % (Cd-F1), 7.24-11.30 % (Cu-F1), 4.20-7.23 % (Pb-F1), 21.21-31.47 % (Zn-F1)) and reducible (24.02-29.41 % (Cd-F2), 25.69-34.95 % (Cu-F2), 74.29-81.07 % (Pb-F2), 28.77-34.19 % (Zn-F2)) fractions of heavy metals, which increased their bioavailability. However, PU MPs reduced the ecological risk of heavy metals in yellow-brown soil by increasing the content of the residual fraction (26.11-40.21 % (Cd-F4), 47.63-59.67 % (Cu-F4), 17.25-26.76 % (Pb-F4), 32.63-50.46 % (Zn-F4)). Changes in the properties of yellow-brown soil and the impact of MPs on heavy metals, might change the chemical speciation of heavy metals. The impact of MPs on heavy metals in yellow-brown soil requires further investigation.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio , Plomo , Metales Pesados/análisis , Microplásticos , Plásticos , Polietileno , Suelo/química , Contaminantes del Suelo/análisis , ZincRESUMEN
Organic matters from various sources such as the manufacturing, agricultural, and pharmaceuticals industries is continuously discharged into water bodies, leading to increasingly serious water pollution. Photocatalytic technology is a clean and green advanced oxidation process, that can successfully decompose various organic pollutants into small inorganic molecules such as carbon dioxide and water under visible light irradiation. Bismuth oxybromide (BiOBr) is an attractive visible light photocatalyst with good photocatalytic performance, suitable forbidden bandwidth, and a unique layered structure. However, the rapid combination of the electron-hole pairs generated in BiOBr leads to low photocatalytic activity, which limits its photocatalytic performance. Due to its unique electronic structure, BiOBr can be coupled with a variety of different functional materials to improve its photocatalytic performance. In this paper, We present the morphologically controllable BiOBr and its preparation process with the influence of raw materials, additives, solvents, synthesis methods, and synthesis conditions. Based on this, we propose design synthesis considerations for BiOBr-based nanocomplexes in four aspects: structure, morphology and crystalline phase, reduction of electron-hole pair complexation, photocorrosion resistance, and scale-up synthesis. The literature on BiOBr-based nanocomposites in the last 10 years (2012-2022) are summarized into seven categories, and the mechanism of enhanced photocatalytic activity of BiOBr-based nanocomposites is reviewed. Moreover, the applications of BiOBr-based nanocomposites in the fields of degradation of dye wastewater, antibiotic wastewater, pesticide wastewater, and phenol-containing wastewater are reviewed. Finally, the current challenges and prospects of BiOBr-based nanocomposites are briefly described. In general, this paper reviews the construction of BiOBr-based nanocomposites, the mechanism of photocatalytic activity enhancement and its research status and application prospects in the degradation of organic pollutants.
Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Plaguicidas , Antibacterianos , Bismuto/química , Dióxido de Carbono , Catálisis , Nanocompuestos/química , Preparaciones Farmacéuticas , Fenol , Solventes , Aguas Residuales , AguaRESUMEN
In this work, a series of Ag3PO4/g-C3N4 (AG) photocatalysts were synthesized. After characterizing the properties, the effects of mass ratio, light intensity, and material dosages on photodegradation were investigated. The material with a 1/2 mass ratio of Ag3PO4/g-C3N4 showed the highest photocatalytic activity under visible light, and the removal efficiency reached 90.22% for an initial suspended algae concentration of 2.7 × 106 cells/mL, 0.1 g of AG, and 3 h of irradiation. These results showed that the conductivity was increased while the total protein and COD contents of the algae suspension were declined rapidly. In contrast, the variations in the malondialdehyde (MDA) level suggested that the algae cell wall was severely damaged and that selective permeability of the membrane was significantly affected. A possible photocatalytic mechanism was proposed and â¢O2- was shown to be the major reactive oxygen species in the photocatalysis. In summary, during the visible light photocatalytic process, the cell structure was destroyed, which caused the leakage of electrolyte, the inactivation of protein, and the inhibition of photosynthesis; finally, the cells died. This study provides a reference for photodegradation of algae pollution in water bodies.
Asunto(s)
Microcystis , Catálisis , Luz , FotólisisRESUMEN
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers. OPEs have been released into various environments (e.g., water, sediments, dust and air, and soil). To investigate the occurrence and distribution of OPEs in various environments in China, this review collects and discusses the published scientific studies in this field. Chlorinated OPEs, as flame retardants, are the predominant OPEs found in the environment. The analysis of data revealed large concentration variations among microenvironments, including inflowing river water (range: 0.69-10.62 µgL-1), sediments (range: 0.0197-0.234 µg/g), dust (range: 8.706-34.872 µg/g), and open recycling sites' soil (range: 0.122-2.1 µg/g). Moreover, OPEs can be detected in the air and biota. We highlight the overall view regarding environmental levels of OPEs in different matrices as a starting point to monitor trends for China. The levels of OPEs in the water, sediment, dust, and air of China are still low. However, dust samples from electronic waste workshop sites were more contaminated. Human activities, pesticides, electronics, furniture, paint, plastics and textiles, and wastewater plants are the dominant sources of OPEs. Human exposure routes to OPEs mainly include dermal contact, dust ingestion, inhalation, and dietary intake. The low level of ecological risk and risk to human health indicated a limited threat from OPEs. Furthermore, current challenges and perspectives for future studies are prospected. A criteria inventory of OPEs reflecting the levels of OPEs contamination association among different microenvironments, emerging OPEs, and potential impact of OPEs on human health, particularly for children are needed in China for better investigation.
RESUMEN
As a new cyanobacterial neurotoxin generated by cyanobacteria, BMAA was closely related to amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC). In this study, the degradation of BMAA by UV/chlorine process was investigated under the impacts of chlorine dosage, NOM dosage, pH and alkalinity. Results showed that only 10% of BMAA was removed by UV irradiation and 46.8% by chlorination in 5 min, however, 98.6% of BMAA was removed by UV/chlorine process in 5 min. The reaction rates were increased under alkaline conditions, but all achieved complete degradation in 5 min. Besides, HCO3- had slight inhibition, while NOM had significant inhibition on the degradation of BMAA. Furthermore, based on the detected degradation products of BMAA during UV/chlorine process, the possible degradation pathways were concluded. Overall, outcomes of this study exhibited that the use of the UV/chlorine process for BMAA degradation was appropriate in practical applications.
Asunto(s)
Aminoácidos Diaminos , Cloro , Toxinas de Cianobacterias , Halogenación , Neurotoxinas/análisisRESUMEN
The performance stability and its recovery mechanisms of a partial nitritation-anammox process were investigated. A one-stage airlift enhanced micro-granules (AEM) system was operated for 650 days continuously to treat 50 mg-NH4/L wastewater. During the stable stage, a high nitrogen removal efficiency of 72.7 ± 8.4% lasting for 230 days was successfully achieved under 0.28 L/min aeration rate and 0.10-0.20 mg/L dissolved oxygen (DO) concentration. A microbial consortium with good granularity appeared in red. The specific activity of anammox and ammonia oxidation increased to 1.02 and 0.93 g-N/g-VSS/d, respectively. Meanwhile, the microbial analysis showed the AEM system shifted the dominant microflora from Proteobacteria to Planctomycetes in which Candidatus Brocadia abundance reached a high of 35.0%. The results reveal that the long-term airlift-aeration promoted granulation and further enhanced activities, the abundances of anammox bacteria, and suppressed nitrite-oxidizing bacteria. Optimizing the DO control is also critical for stability increment and process recovery.
Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Bacterias , Nitritos , Nitrógeno , Oxidación-Reducción , Aguas ResidualesRESUMEN
A one-stage airlift internal circulation biofilm reactor was continuously operated for 668 days to treat 50 mg/L of ammonia wastewater to pursue the long-term stability of partial nitritation and anammox (PNA) process. The operational performance and microbial community structure of the biofilm and the flocs were investigated. A nitrogen removal efficiency (NRE) of 70% was obtained successfully at a dissolved oxygen (DO) of 0.05-0.15 mg/L by regulating aeration rate. The microbial analysis indicated Candidatus Brocadia (29.5%) and Nitrosomonas (6.8%) were dominant in both biofilms and flocs. It was found that DO control and aeration rate were the key factors in performance stability, and a stable performance could be recovered and maintained under oxygen-limiting conditions. Further, the achievement of activated ammonia oxidation bacteria (AOB), dominated anammox bacteria (AMX), suppressed NOB, and controlled heterotrophic bacteria (HB) in the biofilms played a major role in the long-term stable operation.
Asunto(s)
Compuestos de Amonio , Microbiota , Amoníaco , Biopelículas , Reactores Biológicos , Nitrógeno , Oxidación-ReducciónRESUMEN
The bioaugmentation role of microbes is often impeded by heavy metal (HM) ions in constructed wetlands (CWs). To explore the interaction between microbes and HM ions, two identical CWs: an MCW (with resistant microorganisms) and a CCW (as control) were used in this study. Experiments analyzed static adsorption performance in a synthetic HM solution. The removal performance of Cd2+ and Zn2+ was further investigated in both CWs. The removal efficiencies (REs) of 81.92-99.56% and 74.05-98.79% were achieved for Cd2+ and Zn2+ in the adsorption study, respectively. Significantly higher REs of Cd2+ (99.60%), and Zn2+ (94.41%) were achieved in the MCW. The microbial community analysis revealed that the dominant genera were Serratia and Pseudomonas in the MCW. The subcellular analysis further demonstrated that the HMs bioaccumulated mainly in the cytomembrane and cell wall. These results indicate that CW with resistant microorganisms inoculated was an effective strategy for treating HMs wastewater.
Asunto(s)
Metales Pesados/análisis , Aguas Residuales , Cadmio , Eliminación de Residuos Líquidos , Humedales , ZincRESUMEN
Lake bathymetry provides valuable information for lake basin planning and treatment, lake watershed erosion and siltation management, water resource planning, and environmental protection. Lake bathymetry has been surveyed with sounding techniques, including single-beam and multi-beam sonar sounding, and unmanned ship sounding. Although these techniques have high accuracy, most of them require long survey cycles and entail a high degree of difficulty. On the contrary, optical remote sensing inversion methods are easy to implement, but tend to provide less accurate bathymetry measures, especially when applied to turbid waters. The present study, therefore, aims to improve the accuracy of bathymetry measurements through integrating Landsat Thematic Mapper imagery, the Ice, Cloud, and Land Elevation Satellite's Geoscience Laser Altimeter System (ICESat/GLAS) data, and water level data measured at hydrological stations. First, the boundaries of a lake at multiple dates were derived using water extraction, initial boundary extraction, and Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+) strip removal processing techniques. Second, ICESat/GLAS data were introduced to obtain additional topographic information of a lake. The striped topography of a lake's area was then obtained through eliminating and correcting erroneous points and interpolating the values of unknown points. Third, the entire bathymetry of the lake was obtained through interpolating water level values of lake boundary points in various dates. Experiments show that accurate bathymetry (±1 m) can be successfully derived.
RESUMEN
As emerging pollutants, microplastics have attracted the attention of scholars from all over the world. However, there is a lack of research on freshwater areas, even in densely populated urban areas. This study investigated eight urban lakes in Changsha, China. It was found that microplastic concentrations ranged from 2425 ± 247.5 items/m3 to 7050 ± 1060.66 items/m3 in the surface water of research areas and the maximum concentration was found in Yuejin Lake, a tourist spot in the center of the city. Anthropogenic factors are an important reason for microplastic abundance in urban lakes. The major shape of microplastics was linear and most of the microplastics were transparent. More than 89.5% of the microplastics had a size of less than 2 mm. Polypropylene was the dominant type in the studied waters. This study can provide a valuable reference for a better understanding of microplastic pollution in urban areas of China.
Asunto(s)
Monitoreo del Ambiente , Lagos/análisis , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , China , Ciudades , Contaminación Química del Agua/análisisRESUMEN
The Tibet Plateau, the so-called Third Pole of the world, is home to the headstreams of many great rivers. The levels of microplastic pollution in those rivers, however, are unknown. In this study, surface water and sediment samples were collected from six sampling sites along five different rivers. The surface water and sediment samples were collected with a large flow sampler and a stainless steel shovel, respectively. The abundance of microplastics ranged from 483 to 967 items/m3 in the surface water and from 50 to 195 items/kg in the sediment. A large amount of small, fibrous, transparent microplastics were found in this study. Five types of microplastics with different chemical compositions were identified using micro-Raman spectroscopy: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyamide (PA). These results demonstrate that rivers in the Tibet Plateau have been contaminated by microplastics, not only in developed areas with intense human activity but also in remote areas, where microplastic pollution requires further attention.
Asunto(s)
Monitoreo del Ambiente , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental , Polietileno/análisis , Polipropilenos/análisis , Poliestirenos , Ríos/química , Espectrometría Raman , Tibet , AguaRESUMEN
Microplastic pollution was investigated in sediment and surface water in West Dongting Lake and South Dongting Lake for the first time. The abundance of microplastics ranged from 616.67 to 2216.67 items/m³ and 716.67 to 2316.67 items/m³ in the lakeshore surface water of West Dongting Lake and South Dongting Lake, respectively. The highest levels of microplastic pollution were found in the lakes' outlets. In the lake center sites of the West Dongting Lake and South Dongting Lake, the abundance of microplastics ranged from 433.33 to 1500 items/m³ and 366.67 to 1566.67 items/m³, respectively. Meanwhile, the study found that in lakeshore sediment of West Dongting Lake and South Dongting Lake, microplastic concentrations ranged from 320 to 480 items/m³ and 200â»1150 items/m³. Polystyrene (PS) and polyethylene terephthalate (PET) were most common in the surface water and sediment samples, respectively. In addition, we suggest that the effects of polymer types in microplastics should be taken into account when considering abundance. This study can provide valuable points of reference to better understanding microplastic pollution in inland freshwater areas.