RESUMEN
Although fluorescein derivatives have excellent properties and strong practicability, they are typical aggregation-induced quenching (ACQ) molecules, which are not conducive to working in the solid state. Recently, the fluorescein derivative Fl-Me with aggregation-induced emission (AIE) property was synthesized, which brought a new dawn for the research and development of fluorescein-based materials. In this study, the AIE mechanism of Fl-Me was investigated based on time-dependent density functional theory and the ONIOM method. The results revealed that an effective dark-state deactivation pathway leads to the fluorescence quenching of Fl-Me in a solution environment. Accordingly, the AIE phenomenon originates from the closure of the dark-state quenching channel. It is worth emphasizing that we found that the carbonyl group of molecular Fl-Me has intermolecular hydrogen bonding interaction with the adjacent molecules, which caused the increase of the dark-state energy in the crystalline state. Moreover, the restriction of the rotational motion and the nonexistence of the π-π stacking interaction are beneficial to the enhancement of fluorescence upon aggregation. Finally, the ACQ-to-AIE transformation mechanisms of fluorescein derivatives have been discussed. This work provides deeper insight into the photophysical mechanism for the fluorescein derivatives Fl-Me with AIE feature and eventually is expected to help researchers to develop more fluorescein-based AIE materials with remarkable properties for various fields.
RESUMEN
N-protonation for numerous fluorophores is widely known as an efficient switch for the fluorescence turn-on/off in acidic conditions, which has been applied in various scenarios that involve pH monitoring. Yet the universal mechanism for fluorescence regulation through N-protonation is still elusive. Herein, the excited state deactivation processes are systematically investigated for a series of nitrogen-containing fluorescent probes through theoretical approaches. Two types of mechanisms for the complex fluorescent phenomena by N-protonation are concluded: one is through the regulation for the transition to a ππ* twisted intramolecular charge transfer (TICT) state; the other one applies for the case when nonradiative decay pathway is predominant by a dark nπ* state, which is also accompanied by an evident structural twisting and can be regarded as another kind of TICT state. More generally, the formation of the TICT state is closely related to the conjugated π-electrons on the single bond that links the acceptor and donor part of fluorophores, which provides a simple strategy for evaluating the occurrence of the TICT process. The current contributions can bring novel insights for the rational design of functional fluorophores that involve TICT process in the excited states.
Asunto(s)
Electrones , Teoría Cuántica , Espectrometría de FluorescenciaRESUMEN
Amino 2-(2'-hydroxyphenyl)benzazole derivatives are a class of molecules with excellent photophysical properties. Most of them can be applied as a fluorescent probe via the excited-state intramolecular proton transfer (ESIPT) process. In this work, we focus on the effects of heteroatoms (O, S) and substituents (acetylacetone, hydrogen) in the derivatives. Using DFT/TDDFT methods with the B3LYP-D3BJ functionals, the absorption and emission peaks are in good agreement with the experimental data. Results of optimized structures, infrared vibrational spectra, and reduced density gradient present the existence of the ESIPT process in the S1 state in these molecules, it also indirectly shows that the heteroatom S is more than O, and the substituent acetylacetone is more than hydrogen has stronger hydrogen bonds. The proton transfer (PT) potential energy curves (PECs) qualitatively show that it is easier for the heteroatom S to induce ESIPT than that of O. The same for the substituent acetylacetone than that of hydrogen. Under the joint influence of the simultaneous stacking of heteroatom S and acetylacetone substituent, the energy barrier of the PT process can be effectively lowered, realizing a synergistic strategy, which can provide some guidance for the design of fluorescent materials.
RESUMEN
Boron-dipyrromethene derivatives (BODIPYs) are a category of molecules with excellent photophysical properties and can be applied to various fields. This work investigates the fluorescent properties of two azomethine-BODIPY dyads in different solvents based on the time-dependent density functional theory (TD-DFT) method. The potential energy curves (PECs) show that the polar protic solvent and the enhanced π-conjugation effect can lower the proton-transfer (PT) barriers, causing the main configuration of NA-BODIPY in methanol to be the keto form, while the main configuration of NA-BODIPY in toluene and SA-BODIPY in methanol and toluene is the enol form. The keto forms of the two compounds possess the twisted intramolecular charge transfer (TICT) decay pathway in the excited state identified by the optimized twisted configurations and the appropriate barriers of the TICT process, whereas the twisted configurations of the enol forms are nonexistent. TICT successfully competes with excited-state proton transfer (ESIPT) of the keto form, which leads to the fluorescence quenching of NA-BODIPY in methanol. This work provides new ideas for the influence of enol-keto tautomerism and the competitiveness of TICT and ESIPT on the photophysical properties of BODIPYs and is expected to provide guidance for the design of new BODIPY functional molecules.