Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.588
Filtrar
Más filtros

Intervalo de año de publicación
1.
Heliyon ; 10(12): e32952, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994119

RESUMEN

Sensorineural hearing loss (SNHL) is a prevalent condition in otolaryngology. A key obstacle is finding effective strategies for regenerating damaged cochlear hair cells in adult animals. A practical and reliable approach has been developed to create a superior cell source for stem cell transplantation in the inner ear to treat SNHL. Atoh1 is involved in the differentiation of neurons, intestinal secretory cells, and mechanoreceptors including auditory hair cells, and thus plays an important role in neurogenesis. Lentivirus-mediated transfection of bone marrow mesenchymal stem cells (BMSCs) was utilized to achieve stable expression of the essential transcription factor Atoh1, which is crucial for developing auditory hair cells without compromising cell survival. By manipulating the induction conditions through altering the cell growth environment using anti-adherent culture, the synergistic impact of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) was effectively applied to significantly improve the differentiation efficiency of bone marrow-derived mesenchymal stem cells (BMSC) into neural stem cells (NSCs) following Atoh1 transfection, thereby reducing the induction time. The study indicated that the newly proposed transdifferentiation method effectively transformed BMSCs into NSCs in a controlled environment, presenting a potential approach for stem cell transplantation to promote hair cell regeneration.

2.
Sci Total Environ ; 947: 174615, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38997019

RESUMEN

Agricultural drainage containing a large quantity of nutrients can cause quality deterioration and algal blooming of receiving water bodies, thus needs to be effectively remediated. In this study, iron­carbon (FeC) composite-filled constructed wetlands (Fe-C-CWs) were employed to treat farmland drainage at three pollution levels, and organic solid substrates (walnut shells) and phosphate-accumulating denitrifying bacteria (Pseudomonas sp. DWP1) were supplemented to enhance the treatment performance. The results showed that the Fe-C-CWs exhibited notably superior removal efficiency for total nitrogen (TN, 52.0-58.2 %), total phosphorus (TP, 67.8-70.2 %) and chemical oxygen demand (COD, 56.7-70.4 %) than the control systems filled solely with gravel (28.5-32.5 % for TN, 33.2-40.5 % for TP and 30.2-55.0 % for COD) at all influent strengths, through driving autotrophic denitrification, Fe-based dephosphorization, and organic degradation processes. The addition of organic substrates and functional bacteria markedly enhanced pollutant removal in the Fe-C-CWs. Furthermore, use of FeC and organic substrates and denitrifier inoculation decreased CO2 and CH4 emissions from the CWs, and reduced global warming potential of the CWs at low influent strength. Pollutant removal efficiencies in the CWs were only marginally impacted by the increasing influent loads except for NO3--N, and pollutant removal mass was largely increased with the increase of influent strengths. The microbial community in the FeC composite-filled CWs exhibited distinct distribution patterns compared to the gravel-filled CWs regardless of the influent strengths, with obviously higher proportions of dominant genera Trichococcus, Geobacter and Ferritrophicum. Keystone taxa associated with pollutant removal in the Fe-C-filled CWs were identified to be Pseudomonas, Geobacter, Ferritrophicum, Denitratisoma and Sediminibacterium. The developed augmented Fe-C-filled CWs show great promises for remediating agricultural drainage with varied pollutant loads.

3.
J Med Chem ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988250

RESUMEN

Monoacylglycerol lipase (MAGL) is the key enzyme for the hydrolysis of endocannabinoid 2-arachidonoylglycerol (2-AG). The central role of MAGL in the metabolism of 2-AG makes it an attractive therapeutic target for a variety of disorders, including inflammation-induced tissue injury, pain, multiple sclerosis, and cancer. Previously, we reported LEI-515, an aryl sulfoxide, as a peripherally restricted, covalent reversible MAGL inhibitor that reduced neuropathic pain and inflammation in preclinical models. Here, we describe the structure-activity relationship (SAR) of aryl sulfoxides as MAGL inhibitors that led to the identification of LEI-515. Optimization of the potency of high-throughput screening (HTS) hit 1 yielded compound ±43. However, ±43 was not metabolically stable due to its ester moiety. Replacing the ester group with α-CF2 ketone led to the identification of compound ±73 (LEI-515) as a metabolically stable MAGL inhibitor with subnanomolar potency. LEI-515 is a promising compound to harness the therapeutic potential of MAGL inhibition.

4.
Sci Rep ; 14(1): 15037, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951569

RESUMEN

The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Células Asesinas Naturales , Neoplasias Pancreáticas , Análisis de la Célula Individual , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/mortalidad , Células Asesinas Naturales/inmunología , Pronóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Biomarcadores de Tumor/genética , Análisis de la Célula Individual/métodos , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Análisis de Secuencia de ARN , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Persona de Mediana Edad , Anciano , Perfilación de la Expresión Génica
5.
Fitoterapia ; 177: 106111, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971330

RESUMEN

Euphorbia lathyris L. (EL) is a traditional poisonous herbal medicine used to treat dropsy, ascites, amenorrhea, anuria and constipation. Processing to reduce toxicity of EL is essential for its safe and effective application. However, there is little known regarding the molecular mechanism of reducing toxicity after EL processing. This research aimed to screen the differential markers for EL and PEL, explore the differential mechanisms of inflammatory injury induced by EL and processed EL (PEL) to expound the mechanism of alleviating toxicity after EL processing. The results showed that 15 potential biomarkers, mainly belonging to diterpenoids, were screened to distinguish EL from PEL. EL promoted the expressions of TLR4, NLRP3, NF-κB p65, IL-1ß and TNF-α, increased lipid rafts abundance and promoted TLR4 positioning to lipid rafts. Meanwhile, EL decreased LXRα and ABCA1 expression, and reduced cholesterol efflux. In contrast to EL, the effects of PEL on these indicators were markedly weakened. In addition, Euphorbia factors L1, L2, and L3 affected LXRα, ABCA1, TLR4, NLRP3, NF-κB p65, TNF-α and IL-1ß expression, influenced cholesterol efflux and lipid rafts abundance, and interfered with the colocalization of TLR4 and lipid rafts. The inflammatory injury caused by processed EL was significantly weaker than that caused by crude EL, and reduction of Euphorbia factors L1, L2, and L3 as well as attenuation of inflammatory injury participated in processing-based detoxification of EL. Our results provide valuable insights into the attenuated mechanism of EL processing and will guide future research on the processing mechanism of toxic traditional Chinese medicine.

6.
BMC Med Genomics ; 17(1): 187, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014344

RESUMEN

BACKGROUND: With recent advances in gene sequencing technology, more than 60 genetic mutations associated with very early onset inflammatory bowel disease (VEO-IBD) have been reported. Most of the genes are associated with immune deficiencies. The Myosin 5B (MYO5B) gene is primarily involved in cell motility and material transport which is associated with congenital intractable diarrhea and cholestasis. No studies have examined the relationship between the MYO5B gene and VEO-IBD. We report a case of a child with a mutation in the MYO5B gene who was diagnosed with VEO-IBD, then we investigated the association between the MYO5B gene and VEO-IBD. CASE PRESENTATION: A 7-month-old baby girl with a chief complaint of "blood in the stool for more than 4 months and vaginal pus and blood discharge for 3 weeks" was diagnosed with VEO-IBD, and her symptoms improved after treatment with mesalazine. The whole-exome sequencing was performed with peripheral blood. Immunohistochemistry was performed on the terminal ileal tissue. Western blotting, quantitative polymerase chain reaction (Q-PCR) and immunofluorescence were performed with cultured organoid tissue from the terminal ileum. Whole-exome sequencing identified heterozygous missense of MYO5B variant of unknown significance (p. [I769N]; [T1546M]). Immunohistochemistry revealed a significant decrease in the expression of MYO5B protein in the terminal ileum of the child with MYO5B mutation; Q-PCR revealed a decrease in the mRNA levels of occludin and ZO-1 and both the mRNA levels and protein levels of MYO5B was downregulated in the patient. Immunofluorescence images showed that MYO5B gene mutation disrupted the apical delivery of transporters SGLT1, NHE3 and AQP7. CONCLUSIONS: MYO5B gene mutation leading to the downregulation of MYO5B protein may promote the occurrence of VEO-IBD by decreasing mRNA and protein levels of intestinal tight junction genes and dislocating the apical transporters.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mutación , Miosina Tipo V , Humanos , Femenino , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Miosina Tipo V/genética , Lactante , Edad de Inicio , Secuenciación del Exoma , Cadenas Pesadas de Miosina
7.
Plant Physiol Biochem ; 214: 108940, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39024781

RESUMEN

Plant growth is severely harmed by cadmium (Cd) contamination, while the addition of zinc (Zn) can reduce the toxic effects of Cd. However, the interaction between Cd and Zn on the molecular mechanism and cell wall of Cosmosbipinnatus is unclear. In this study, a transcriptome was constructed using RNA-sequencing. In C. bipinnatus root transcriptome data, the expression of 996, 2765, and 3023 unigenes were significantly affected by Cd, Zn, and Cd + Zn treatments, respectively, indicating different expression patterns of some metal transporters among the Cd, Zn, and Cd + Zn treatments. With the addition of Zn, the damage to the cell wall was reduced, both the proportion and content of polysaccharides in the cell wall were changed, and Cd accumulation was decreased by 32.34%. In addition, we found that Cd and Zn mainly accumulated in pectins, the content of which increased by 30.79% and 61.4% compared to the CK treatment. Thus, Zn could alleviate the toxicity of Cd to C. bipinnatus. This study revealed the interaction between Cd and Zn at the physiological and molecular levels, broadening our understanding of the mechanisms of tolerance to Cd and Zn stress in cosmos.

8.
Science ; 384(6703): 1415, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935723
9.
Mar Drugs ; 22(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38921594

RESUMEN

Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvß3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvß3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvß3. Activation of the integrin αvß3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.


Asunto(s)
Plaquetas , Células Endoteliales de la Vena Umbilical Humana , Sepsis , Factor de von Willebrand , Animales , Sepsis/tratamiento farmacológico , Factor de von Willebrand/metabolismo , Humanos , Ratones , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Masculino , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Permeabilidad Capilar/efectos de los fármacos
10.
Adv Sci (Weinh) ; : e2400480, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881515

RESUMEN

Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aß) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aß plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aß clearance and alleviating AD pathology. ECM remodeling also promoted Aß plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.

11.
Appl Opt ; 63(13): 3399-3405, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856524

RESUMEN

Weakly coupled mode-division multiplexing (MDM) transmission over legacy laid multimode fiber (MMF) has great economic efficiency and can enormously enhance the capacity of short-reach optical interconnections. In order to be compatible with cost-efficient intensity-modulation/direct-detection (IM/DD) transceivers, weakly coupled mode-group demultiplexers that can simultaneously receive each mode group of MMFs are highly desired. In this paper, we propose a scalable low-modal-crosstalk mode-group demultiplexer over MMF based on multiplane light conversion (MPLC). Multiple input Hermite-Gaussian (HG) modes of MMF are first converted to bridging modes that are composed of H G 00 modes distributed as a right-angle triangle in Cartesian coordinates, and then each H G 00 mode belonging to a degenerate mode group is mapped to different overlapped H G n0 modes with vertical orientation for simultaneous detection. With the help of bridging modes, the MPLC-based mode-group demultiplexer can efficiently demultiplex all mode groups in standard MMFs with less than 20 phase masks. A nine-mode-group demultiplexer is further designed for demonstration, and simulation results show that the MPLC-based demultiplexer achieves low modal crosstalk of lower than -22.3d B at 1550 nm and lower than -17.9d B over the C-band for all the nine mode groups with only 16 phase masks.

12.
Appl Opt ; 63(13): 3636-3640, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856549

RESUMEN

Active adjustable terahertz multifunctional devices are crucial for the application of terahertz technology. In this paper, we propose a composite metasurface structure based on an indium antimonide metal octagonal pattern, which achieves different functional switching by controlling the phase state of indium antimonide material under different ambient temperatures. When indium antimonide exhibits in the dielectric state, by stacking and encoding the unit cell, the designed metasurface has the functions of two-beam splitting beam superposition, vortex beam and quarter beam superposition, and dual vortex beam superposition for circularly polarized and linearly polarized wave incidence. When indium antimonide appears in the metallic state, the encoding metasurface alters the modulation function of incident circularly polarized and linearly polarized terahertz waves. This terahertz metasurface provides a new approach for the design of multifunctional devices that can flexibly regulate terahertz wave metasurfaces.

13.
Fish Physiol Biochem ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869816

RESUMEN

This study aims to evaluate the effects of substituting soybean meal with fermented rapeseed meal (FRM) on growth, antioxidant capacity, and liver and intestinal health of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). A total of 450 tilapia (7.22 ± 0.15 g) were fed with five experimental diets, including a basal diet containing 40% soybean meal (CP0), which was subsequently replaced by 25% (CP25), 50% (CP50), 75% (CP75), and 100% (CP100) FRM in a recirculated aquiculture system for 9 weeks (30 fish per tank in triplicates). The results showed that the weight gain, specific growth rate, feed intake, feed efficiency, hepatosomatic index, and viscerosomatic index of fish in both CP75 and CP100 groups were significantly lower than those in CP0 group (P < 0.05). The fish in CP100 group had the lower content of muscle crude protein while the higher level of muscle crude lipid (P < 0.05). Activities of serum aspartate aminotransferase, alanine aminotransferase along with total triglyceride in CP100 group were significantly higher than those in CP0 group (P < 0.05). There were no significant differences in the contents of liver protease, amylase, and lipase among five groups (P > 0.05). The activities of liver total antioxidant capacity and superoxide dismutase exhibited the increased tendency with the increase of FRM replacement levels from 25 to 50% (P < 0.05), while then significantly decreased from 75 to 100% (P < 0.05). Histological morphology indicated that the fish in between CP75 and CP100 groups had poor liver and intestine health. Intestinal microbial diversity analysis showed that the relative abundance of Cetobacterium and Alcaligenaceae in both CP75 and CP100 groups were lower than that in other three groups. In conclusion, the maximum replacement level of soybean meal with FRM in the diet was determined to be 50% without compromising the growth performance, antioxidant status, and liver and intestinal health of tilapia under the current experimental conditions. The observed decrease in food intake and subsequent retarded growth performance in the CP75 and CP100 groups can be attributed directly to a reduction in feed palatability caused by FRM.

14.
Int J Surg ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935104

RESUMEN

BACKGROUND: Postoperative depression has a profound impact on patients' postoperative rehabilitation and overall quality of life. Preventing postoperative depression is of significant value because conventional antidepressants have a slow onset of action. Esketamine showed prompt and sustained antidepressant efficacy. Nevertheless, the safety and effectiveness of perioperative esketamine in preventing postoperative depression are still unknown. The purpose of this meta-analysis was to assess the safety and effectiveness of perioperative intravenous esketamine in relation to its ability to prevent postoperative depression. MATERIALS AND METHODS: Randomized controlled trials were searched in the following databases: Web of Science, Cochrane Central Registry of Controlled Trials, PubMed, and Embase. The primary outcome assessed is the postoperative depression scores. Postoperative pain ratings and adverse effects constituted secondary outcomes. Subgroup analyses were carried out on the basis of multiple variables, including the absence or presence of preoperative depression, the mode of esketamine administration, the dosage of esketamine, and the type of anesthesia. RESULTS: A total of 16 studies encompassed 1161 patients who received esketamine intervention, whereas 1106 patients served as controls. Esketamine was efficacious in reducing postoperative depression scores when administered perioperatively, and the esketamine group maintained a lower postoperative depression score than the control group more than four weeks after surgery. Esketamine effectively alleviated postoperative pain scores without increasing the occurrence of postoperative nausea and vomiting, dizziness, drowsiness, nightmares, and dissociation. CONCLUSION: The administration of esketamine during the perioperative has the potential to decrease postoperative depression and pain scores without increasing the incidence of adverse effects.

15.
Phys Chem Chem Phys ; 26(24): 17383-17395, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860766

RESUMEN

Although GaN is a promising candidate for semiconductor devices, degradation of GaN-based device performance may occur when the device is bombarded by high-energy charged particles during its application in aerospace, astronomy, and nuclear-related areas. It is thus of great significance to explore the influence of irradiation on the microstructure and electronic properties of GaN and to reveal the internal relationship between the damage mechanisms and physical characteristics. Using a combined density functional theory (DFT) and ab initio molecular dynamics (AIMD) study, we explored the low-energy recoil events in GaN and the effects of point defects on GaN. The threshold displacement energies (Eds) significantly depend on the recoil directions and the primary knock-on atoms. Moreover, the Ed values for nitrogen atoms are smaller than those for gallium atoms, indicating that the displacement of nitrogen dominates under electron irradiation and the created defects are mainly nitrogen vacancies and interstitials. The formation energy of nitrogen vacancies and interstitials is smaller than that for gallium vacancies and interstitials, which is consistent with the AIMD results. Although the created defects improve the elastic compliance of GaN, these radiation damage states deteriorate its ability to resist external compression. Meanwhile, these point defects lead the Debye temperature to decrease and thus increase the thermal expansion coefficients of GaN. As for the electronic properties of defective GaN, the point defects have various effects, i.e., VN (N vacancy), Gaint (Ga interstitial), Nint (N interstitial), and GaN (Ga occupying the N lattice site) defects induce the metallicity, and NGa (N occupying the Ga lattice site) defects decrease the band gap. The presented results provide underlying mechanisms for defect generation in GaN, and advance the fundamental understanding of the radiation resistances of semiconductor materials.

16.
J Clin Invest ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38885336

RESUMEN

Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes in addition to bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in IFITM5. Here, we generated a conditional Rosa26 knock-in mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in OI type V patients. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with increase in the skeletal progenitor population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 showed decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupts early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.

17.
J Environ Manage ; 362: 121286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824886

RESUMEN

Water deficiency threatens the health and function of wetlands in semi-arid areas. Optimum re-watering is an effective method for close-to-natural restoration to mitigate wetland degradation. Although the ecological importance of optimal re-watering as a nature-based solution for promoting wetland plant growth has been widely recognized, the response mechanisms of seed germination and seedling growth to re-watering are still poorly understood despite their decisive impact on plant life history. To fill this gap, this study compared the characteristics of seed germination and seedling growth in Carex schmidtii under initial water content with three levels (30%, 50%, and 70%) and five re-watering treatments (maintained at constant water content and re-watering to 100% on 7th, 14th, 21st, and 28th day). Moreover, the degree of reserve mobilization during four germination stages (seed suckering, sprouting, 20% germination, and seedling growth) was investigated. The results showed that water deficiency and re-watering treatments significantly affected C. schmidtii seed germination, seedling growth, and reserve mobilization. Compared with the other treatments, 50% moisture content and re-watering to 100% on the 14th day (50%-RT3) treatment significantly improved germination traits (germination rate, daily germination rate, germination index, and vigor index) and seedling growth characteristics (shoot length, root length, shoot biomass, root biomass, and total biomass). Furthermore, the degree of mobilization of starch, soluble protein, fat, and soluble sugar accumulation in C. schmidtii seeds under 50%-RT3 was higher than that in the other treatments. The structural equation model showed that the characteristics of seed germination and seedling growth of C. schmidtii were directly related to water deficiency and re-watering treatments, whereas reserve mobilization indirectly affected seed germination and seedling growth. These findings demonstrated that water deficiency and re-watering treatments have a crucial regulatory effect on seed germination and seedling growth of wetland plant species through a dual mechanism. This study provides information for the formulation of an optimum re-watering strategy for wetland vegetation restoration in semi-arid areas of the world.


Asunto(s)
Germinación , Plantones , Semillas , Agua , Humedales , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo
18.
Plant Dis ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812364

RESUMEN

Macadamia (Macadamia ternifolia Maiden and Betche) belongs to the Proteaceae family (Li et al. 2022). In the hilly areas of Guangxi (southern China), macadamia trees are an important source of revenue. The planting area in Guangxi has increased in recent years, exceeding 53,333 hectares by the end of 2022, but this increase is also associated with emergency of, macadamia diseases. Leaf blight symptoms were observed in 37/241 macadamia trees (15% incidence) in a plantation in Nanning, Guangxi province in China, during June, 2022. Disease severity on infected trees ranged from 5% to 60%. The disease developed from the tips or margins of leaves, causing the leaves to turn brown, and later gradually withered (Fig. 1 A). Ten leaves with lesions were collected from five macadamia trees (two leaves per tree. Thereafter, small segments (3 to 4 mm²) excised from the margins of ten lesions were surface sterilized in 75% ethanol for 30 s and 1% hypochlorite for 90 s and Page 1 of 6 2 rinsed in sterile water, before plating onto potato dextrose agar (PDA) medium. Plates were incubated under lighting during the daytime, and darkness at night-time for 5 days at 25℃. Twenty-two purified colonies were generated by subculturing hyphal tips, of which eight exhibited similar morphology and were further characterized. The colonies on PDA were gray with a white outer ring and flat lawn on the surface (Fig. 1 B). The pycnidia were superficial to semi-immersed on PDA, solitary to aggregated, globose to sub-globose, brown to black and oozed yellow mucilaginous masses (Fig.1 C). The α-conidia were unicellular, hyaline elliptical or fusiform, and measuring 4-8 × 1.9-4 µm (n=30) , whereas the ß-conidia were hyaline, long, straight or curved, measuring 20-23 × 0.9-2 µm (n=30) (Fig. 1 D-E). The morphological features were similar to Diaporthe hongkongensis (Dissanayake et al. 2015). The eight morphologically similar isolates were identified as D. hongkongensis using the internal transcribed spacer (ITS) region, but only one isolate, JG11, was selected for further molecular identification. Five target genes, including the ITS region, translation elongation factor 1 alpha (EF1-α), beta-tubulin genes (TUB2), calmodulin (CAL), and histone H3 (HIS) were amplified and sequenced using primers ITS1/ITS4, EF1-728F/EF1-986R, Bt2a/Bt2b, CAL-228F/CAL-737R, and CYLH3F/H3-1b, respectively (Carbone and Kohn 1999). The sequences were deposited in GenBank under accession numbers OQ932790 (ITS) and OR147955-58 for EF1-α, TUB, CAL and HIS genes, respectively. BLAST search of GenBank showed that ITS, EF1-α, TUB, CAL, and HIS sequences of JG11 were similar to Page 2 of 6 3 those of D. hongkongensis NR111848 (99.22% identity), KY433566 (99.72%), MW208603 (99.42%), MW221740 (99.80%), and MW221661 (99.79%), respectively. Phylogenetic analysis of concatenated sequences was performed with IQ-TREE software. JG11 was grouped in the same clade as other Diaporthe hongkongensis isolates (Fig. 2). Pathogenicity experiments were carried out on healthy macadamia trees in a greenhouse. Three macadamia trees were used as negative controls where five uninjured leaves per tree were sprayed with sterile distilled water. Uninjured five leaves per tree of three other macadamia trees were sprayed with conidia suspension of the isolate JG11 at a concentration of 1×106. Each treatment was repeated 3 times independently, with 5 leaves per tree (Liu et al. 2023; Havill et al. 2023; Zhang et al. 2022). Plastic bags were placed over all inoculated leaves. The average daily temperature and relative humidity in the greenhouse were 32°C and 65%, respectively. Two days later, browning appeared on the leaves inoculated with the spore suspension and expanded outward. After 5 days, all macadamia leaves inoculated with the fungal spores began to wither, while controls remained asymptomatic (Fig. 1 H-I). D. hongkongensis was consistently re-isolated and purified from inoculated leaves and the identity was confirmed by morphological identification and molecular analysis, completed Koch's postulates. D. hongkongensis has been reported on peach (Zhang et al. 2021), grapevine trunk (Dissanayake et al. 2015) and Cunninghamia lanceolata (Liao et al. 2022). To our knowledge, this is the first report of D. hongkongensis causing leaf blight on macadamia in China. These findings provide a foundation for future research on the epidemiology and control of this newly emerging disease of macadamia.

19.
Anim Nutr ; 17: 335-346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800736

RESUMEN

The present study aimed to compare the nutritional effects of cholesterol, bile acids, and combination of cholesterol with bile acids in plant-based diets on juvenile genetically improved farmed tilapia (GIFT; Oreochromis niloticus). The isonitrogenous (321 g/kg crude protein) and isolipidic (76 g/kg crude fat) diets (Con diet) were based on plant protein sources, which included corn gluten meal, soybean meal, cottonseed meal and rapeseed meal. The Con diet was supplemented with 12 g/kg cholesterol (CHO diet), 0.2 g/kg bile acids (BAs diet), a combination of 12 g/kg cholesterol and 0.2 g/kg bile acids (CHO-BAs diet), respectively. Each diet was fed to three tanks in an indoor recirculating aquaculture system for 9 weeks. Results showed that compared to the Con group, fish had a higher weight gain rate, hepatosomatic index, and a lower feed conversion ratio in the CHO-BAs group. The highest levels of whole-fish fat and ash were found in the Con group. Serum parameters, including activities of alanine aminotransferase (ALT) and aspartate transaminase (AST), along with levels of glucose (GLU) and triglyceride (TG) except for total cholesterol (TCHO), were lower in the CHO, BAs, and CHO-BAs groups than those in the Con group (P < 0.001). Histological examination revealed that fish in the Con group exhibited severe hepatocyte vacuolization and diminished hepatocyte proliferation. Gene expression analysis indicated that the transcriptional levels of bile acid metabolism-related genes (including fxr, fgf19, bsep) were up-regulated in the CHO-BAs group (P < 0.05), whereas cholesterol metabolism-related genes (acly and hmgcr) were down-regulated in both CHO and CHO-BAs groups (P < 0.001). Moreover, UPLC-MS/MS analysis revealed that the higher taurine-conjugated bile acids (T-BAs), followed by free bile acids (Free-BAs) and glycine (G-BAs) were determined in tilapia bile. Among these, taurochenodeoxycholic bile acid was the predominant bile acid. Dietary bile acids supplementation also increased the proportion of T-BAs (tauro ß-muricholic acid and taurodehydrocholic acid) while decreasing Free-BAs in the fish bile. In conclusion, the incorporation of cholesterol with bile acids into plant-based diets can effectively reduce cholesterol uptake, suppress bile acids synthesis, enhance bile acids efflux, and promote hepatocyte proliferation, which is helpful for maintaining the normal liver morphology in tilapia, and thus improving its growth performance.

20.
J Neural Eng ; 21(3)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754410

RESUMEN

Objective.Upper limb loss can profoundly impact an individual's quality of life, posing challenges to both physical capabilities and emotional well-being. To restore limb function by decoding electromyography (EMG) signals, in this paper, we present a novel deep prototype learning method for accurate and generalizable EMG-based gesture classification. Existing methods suffer from limitations in generalization across subjects due to the diverse nature of individual muscle responses, impeding seamless applicability in broader populations.Approach.By leveraging deep prototype learning, we introduce a method that goes beyond direct output prediction. Instead, it matches new EMG inputs to a set of learned prototypes and predicts the corresponding labels.Main results.This novel methodology significantly enhances the model's classification performance and generalizability by discriminating subtle differences between gestures, making it more reliable and precise in real-world applications. Our experiments on four Ninapro datasets suggest that our deep prototype learning classifier outperforms state-of-the-art methods in terms of intra-subject and inter-subject classification accuracy in gesture prediction.Significance.The results from our experiments validate the effectiveness of the proposed method and pave the way for future advancements in the field of EMG gesture classification for upper limb prosthetics.


Asunto(s)
Electromiografía , Gestos , Semántica , Humanos , Electromiografía/métodos , Masculino , Femenino , Adulto , Aprendizaje Profundo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA