Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 259-270, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39146814

RESUMEN

There is an urgent need for highly active, durable, and low-cost electrocatalysts to overcome the shortcomings of high overpotential in the oxygen evolution reaction (OER) process. In this work, the nickel-iron hydroxysulfate rich in sulfate and oxygen vacancies (SO42-@Fe-NiOOH-Ov/NiS) is legitimately constructed. SO42-@Fe-NiOOH-Ov/NiS only requires a low overpotentials of 190 mV and 232 mV at 10 mA cm-2 and 100 mA cm-2 current densities in 1 M KOH, with excellent stability for 200 h at 100 mA cm-2 current density. In situ Raman spectroscopy and Fourier transform infrared spectroscopy demonstrated the stable adsorption of more SO42- on the surface of catalyst. Density functional theory calculations testify surface reconstruction, doped Fe and oxygen vacancies significantly reduced the adsorption energy of sulfate on the surface. More importantly, the formation of *OOH to O2 is facilitated by the highly hydrogen bonding between SO42- and *OOH, accelerating the OER process.

2.
J Colloid Interface Sci ; 675: 36-51, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964123

RESUMEN

The defects formed by N doping always coexist with pyrrole nitrogen (Po) and pyridine nitrogen (Pd), and the synergistic mechanisms of H2O2 production and PMS activation between the different Po: Pd are unknown. This paper synthesized MOF-derived carbon materials with different nitrogen-type ratios as cathode materials in an electro-Fenton system using precursors with different nitrogen-containing functional groups. Several catalysts with different Po: Pd ratios (0:4, 1:3, 2:2, 3:1, 4:0) were prepared, and the best catalyst for LEV degradation was FC-CN (Po: Pd=3:1). X-ray Photoelectron Spectroscopy (XPS) and density-functional theory (DFT) calculations show that the introduction of nitrogen creates an interfacial micro-electric field (IMEF) in the carbon layer and the metal, accelerates the electron transfer from the carbon layer to the Co atoms, and promotes cycling between the Fe3+/Co2+ redox pairs, with the electron transfer reaching a maximum at Po: Pd = 3:1. FC-CN (Po: Pd=3:1) achieved more than 95 % LEV degradation in 90 min at pH = 3-9, with a lower energy consumption of 0.11 kWh m-3 order-1. and the energy consumption of the catalyst for LEV degradation is lower than that of those catalysts reported. In addition, the degradation pathway of LEV was proposed based on UPLC-MS and Fukui function. This study offers some valuable information for the application of MOF derivatives.

3.
J Colloid Interface Sci ; 668: 551-564, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691964

RESUMEN

To reveal the mechanism of charge transfer between interfaces of BiVO4-based heterogeneous materials in photoelectrochemical water splitting system, the cocatalyst was grown in situ using tannic acid (TA) as a ligand and Fe and Co ions as metal centers (TAFC), and then uniformly and ultra-thinly coated on BiVO4 to form photoanodes. The results show that the BiVO4/TAFC achieves a superior photocurrent density (4.97 mA cm-2 at 1.23 VRHE). The charge separation and charge injection efficiencies were also significantly higher, 82.0 % and 78.9 %, respectively. From XPS, UPS, KPFM, and density functional theory calculations, Ligand-to-metal charge transfer (LMCT) acts as an electron transport highway in TAFC ultrathin layer to promote the concentration of electrons towards metal center, leading to an increase in the work function, which enhances the built-in electric field and further improves the charge transport. This study demonstrated that the LMCT pathway on TA-metal complexes enhances the built-in electric field in BiVO4/TAFC to promote charge transport and thus enhance water oxidation, providing a new understanding of the performance improvement mechanism for the surface-modified composite photoanodes.

4.
J Colloid Interface Sci ; 665: 977-987, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574586

RESUMEN

The photoelectrochemical (PEC) performance ofBiVO4 is limited by sluggish water oxidation kinetics and severe carrier recombination. Herein, a novel high-performance BiVO4/NiFe-NOAQ photoanode is prepared by a simple one-step hydrothermal method, using BiVO4 and 1-Nitroanthraquinone (NOAQ) as raw materials. The BiVO4/NiFe-NOAQ photoanode has an excellent photocurrent density of 5.675 mA cm-2 at 1.23 VRHE, which is 3.35 times higher than that of the pure BiVO4 (1.693 mA cm-2) photoanode. The BiVO4/NiFe-NOAQ shows a significant improvement in charge separation efficiency (86.12 %) and charge injection efficiency (87.86 %). The improvement is ascribable to the NiFe-NOAQ form a type II heterojunction with BiVO4 to inhibit carrier recombination. More importantly, the kinetic isotope experiment suggests that the proton-coupled electron transfer (PCET) process can enhance the charge transfer of BiVO4/NiFe-NOAQ. The contact angle measurements show that modifying functional groups enhanced the hydrophilicity of BiVO4/NiFe-NOAQ, which can further accelerate the PCET process. The XPS and PL results as well as the tauc plot indicate that the strong electron-withdrawing ability of -NO2 which can promote the extension of π conjugation, results in more π electron delocalization and produces more efficient active sites, thus achieving efficient photoelectrochemical water oxidation.

5.
Small ; 20(31): e2311906, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461529

RESUMEN

The challenge of synthesizing nanocrystal photocatalysts with adjustable lattice strain for effective waste-to-energy conversion is addressed in this study. Cd0.5Zn0.5S (CZS) nanocrystals are synthesized by a simple solvothermal method, regulation of the ratio between N, N-dimethylformamide, and water solvent are shown to provoke expansion and contraction, inducing an adjustable lattice strain ranging from -1.2% to 5.6%. With the hydrolyzed wasted plastic as a sacrificial agent, the 5.6% lattice-strain CZS exhibited a robust hydrogen evolution activity of 1.09 mmol m-2 h-1 (13.83 mmol g-1 h-1), 4.5 times that of pristine CZS. Characterizations and density functional theory calculation demonstrated that lattice expansion increases the spatial distance between the valence band maximum and conduction band minimum, thus reducing carrier recombination and promoting charge transfer. Additionally, lattice expansion induces surface S vacancies and adsorbed OH groups, further enhancing redox reactions. This study focuses on the synchronous regulation of crystal structure, charge separation/transport, and surface reactions through lattice strain engineering, which providing a reference for the rational design of new photocatalysts for effective waste-to-energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA