Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ISME J ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896025

RESUMEN

The SeqCode is a new code of prokaryotic nomenclature that was developed to validate taxon names using genome sequences as type material. The present article provides an independent view about the SeqCode, highlighting its history, current status, basic features, pros and cons, and use to date. We also discuss important topics to consider for validation of novel prokaryotic taxon names using genomes as type material. Owing to significant advances in metagenomics and cultivation methods, hundreds of novel prokaryotic species are expected to be discovered in the coming years. This manuscript aims to stimulate and enrich the debate around the use of the SeqCode in the upcoming golden age of prokaryotic taxon discovery and systematics.

2.
Syst Appl Microbiol ; 47(1): 126485, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38211536

RESUMEN

An easy and straightforward way to engineer microbial environmental communities is by setting up liquid enrichment cultures containing a specific substrate as the sole source of carbon. Here, we analyzed twenty single-contig high-quality metagenome-assembled genomes (MAGs) retrieved from a microbial consortium (T6) that was selected by the dilution-to-stimulation approach using Andean soil as inoculum and lignocellulose as a selection pressure. Based on genomic metrics (e.g., average nucleotide and amino acid identities) and phylogenomic analyses, 15 out of 20 MAGs were found to represent novel bacterial species, with one of those (MAG_26) belonging to a novel genus closely related to Caenibius spp. (Sphingomonadaceae). Following the rules and requirements of the SeqCode, we propose the name Andeanibacterium colombiense gen. nov., sp. nov. for this taxon. A subsequent functional annotation of all MAGs revealed that MAG_7 (Pseudobacter hemicellulosilyticus sp. nov.) contains 20, 19 and 16 predicted genes from carbohydrate-active enzymes families GH43, GH2 and GH92, respectively. Its lignocellulolytic gene profile resembles that of MAG_2 (the most abundant member) and MAG_3858, both of which belong to the Sphingobacteriaceae family. Using a database that contains experimentally verified plastic-active enzymes (PAZymes), twenty-seven putative bacterial polyethylene terephthalate (PET)-active enzymes (i.e., alpha/beta-fold hydrolases) were detected in all MAGs. A maximum of five putative PETases were found in MAG_3858, and two PETases were found to be encoded by A. colombiense. In conclusion, we demonstrate that lignocellulose-enriched liquid cultures coupled with genome-resolved metagenomics are suitable approaches to unveil the hidden bacterial diversity and its polymer-degrading potential in Andean soil ecosystems.


Asunto(s)
Ecosistema , Suelo , Humanos , Filogenia , ARN Ribosómico 16S/genética , Bacterias , Bacteroidetes/genética , Metagenoma , Metagenómica
3.
Trends Biotechnol ; 42(3): 265-268, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37845169

RESUMEN

The design and study of active microbial consortia able to degrade plastics represent an exciting area of research toward the development of bio-based alternatives to efficiently transform plastic waste. This forum article discusses concepts and mechanisms to inform emerging strategies for engineering microbiomes to transform plastics under controlled settings.


Asunto(s)
Microbiota , Plásticos , Plásticos/metabolismo , Biodegradación Ambiental , Consorcios Microbianos
4.
Biotechnol Biofuels Bioprod ; 16(1): 54, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991472

RESUMEN

BACKGROUND: In a previous study, shaking speed was found to be an important factor affecting the population dynamics and lignocellulose-degrading activities of a synthetic lignocellulolytic microbial consortium composed of the bacteria Sphingobacterium paramultivorum w15, Citrobacter freundii so4, and the fungus Coniochaeta sp. 2T2.1. Here, the gene expression profiles of each strain in this consortium were examined after growth at two shaking speeds (180 and 60 rpm) at three time points (1, 5 and 13 days). RESULTS: The results indicated that, at 60 rpm, C. freundii so4 switched, to a large extent, from aerobic to flexible (aerobic/microaerophilic/anaerobic) metabolism, resulting in continued slow growth till late stage. In addition, Coniochaeta sp. 2T2.1 tended to occur to a larger extent in the hyphal form, with genes encoding adhesion proteins being highly expressed. Much like at 180 rpm, at 60 rpm, S. paramultivorum w15 and Coniochaeta sp. 2T2.1 were key players in hemicellulose degradation processes, as evidenced from the respective CAZy-specific transcripts. Coniochaeta sp. 2T2.1 exhibited expression of genes encoding arabinoxylan-degrading enzymes (i.e., of CAZy groups GH10, GH11, CE1, CE5 and GH43), whereas, at 180 rpm, some of these genes were suppressed at early stages of growth. Moreover, C. freundii so4 stably expressed genes that were predicted to encode proteins with (1) ß-xylosidase/ß-glucosidase and (2) peptidoglycan/chitinase activities, (3) stress response- and detoxification-related proteins. Finally, S. paramultivorum w15 showed involvement in vitamin B2 generation in the early stages across the two shaking speeds, while this role was taken over by C. freundii so4 at late stage at 60 rpm. CONCLUSIONS: We provide evidence that S. paramultivorum w15 is involved in the degradation of mainly hemicellulose and in vitamin B2 production, and C. freundii so4 in the degradation of oligosaccharides or sugar dimers, next to detoxification processes. Coniochaeta sp. 2T2.1 was held to be strongly involved in cellulose and xylan (at early stages), next to lignin modification processes (at later stages). The synergism and alternative functional roles presented in this study enhance the eco-enzymological understanding of the degradation of lignocellulose in this tripartite microbial consortium.

5.
Appl Environ Microbiol ; 88(14): e0072122, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35762791

RESUMEN

In the Anthropocene, plastic pollution is a worldwide concern that must be tackled from different viewpoints, bringing together different areas of science. Microbial transformation of polymers is a broad-spectrum research topic that has become a keystone in the circular economy of fossil-based and biobased plastics. To have an open discussion about these themes, experts in the synthesis of polymers and biodegradation of lignocellulose and plastics convened within the framework of The Transnational Network for Research and Innovation in Microbial Biodiversity, Enzymes Technology and Polymer Science (MENZYPOL-NET), which was recently created by early-stage scientists from Colombia and Germany. In this context, the international workshop "Microbial Synthesis and Degradation of Polymers: Toward a Sustainable Bioeconomy" was held on 27 September 2021 via Zoom. The workshop was divided into two sections, and questions were raised for discussion with panelists and expert guests. Several key points and relevant perspectives were delivered, mainly related to (i) the microbial evolution driven by plastic pollution; (ii) the relevance of and interplay between polymer structure/composition, enzymatic mechanisms, and assessment methods in plastic biodegradation; (iii) the recycling and valorization of plastic waste; (iv) engineered plastic-degrading enzymes; (v) the impact of (micro)plastics on environmental microbiomes; (vi) the isolation of plastic-degrading (PD) microbes and design of PD microbial consortia; and (vii) the synthesis and applications of biobased plastics. Finally, research priorities from these key points were identified within the microbial, enzyme, and polymer sciences.


Asunto(s)
Plásticos , Reciclaje , Biodegradación Ambiental , Consorcios Microbianos , Plásticos/metabolismo , Polímeros/metabolismo
6.
ISME Commun ; 2(1): 89, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37938754

RESUMEN

The understanding and manipulation of microbial communities toward the conversion of lignocellulose and plastics are topics of interest in microbial ecology and biotechnology. In this study, the polymer-degrading capability of a minimal lignocellulolytic microbial consortium (MELMC) was explored by genome-resolved metagenomics. The MELMC was mostly composed (>90%) of three bacterial members (Pseudomonas protegens; Pristimantibacillus lignocellulolyticus gen. nov., sp. nov; and Ochrobactrum gambitense sp. nov) recognized by their high-quality metagenome-assembled genomes (MAGs). Functional annotation of these MAGs revealed that Pr. lignocellulolyticus could be involved in cellulose and xylan deconstruction, whereas Ps. protegens could catabolize lignin-derived chemical compounds. The capacity of the MELMC to transform synthetic plastics was assessed by two strategies: (i) annotation of MAGs against databases containing plastic-transforming enzymes; and (ii) predicting enzymatic activity based on chemical structural similarities between lignin- and plastics-derived chemical compounds, using Simplified Molecular-Input Line-Entry System and Tanimoto coefficients. Enzymes involved in the depolymerization of polyurethane and polybutylene adipate terephthalate were found to be encoded by Ps. protegens, which could catabolize phthalates and terephthalic acid. The axenic culture of Ps. protegens grew on polyhydroxyalkanoate (PHA) nanoparticles and might be a suitable species for the industrial production of PHAs in the context of lignin and plastic upcycling.

7.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33127812

RESUMEN

The engineering of complex communities can be a successful path to understand the ecology of microbial systems and improve biotechnological processes. Here, we developed a strategy to assemble a minimal and effective lignocellulolytic microbial consortium (MELMC) using a sequential combination of dilution-to-stimulation and dilution-to-extinction approaches. The consortium was retrieved from Andean forest soil and selected through incubation in liquid medium with a mixture of three types of agricultural plant residues. After the dilution-to-stimulation phase, approximately 50 bacterial sequence types, mostly belonging to the Sphingobacteriaceae, Enterobacteriaceae, Pseudomonadaceae, and Paenibacillaceae, were significantly enriched. The dilution-to-extinction method demonstrated that only eight of the bacterial sequence types were necessary to maintain microbial growth and plant biomass consumption. After subsequent stabilization, only two bacterial species (Pseudomonas sp. and Paenibacillus sp.) became highly abundant (>99%) within the MELMC, indicating that these are the key players in degradation. Differences in the composition of bacterial communities between biological replicates indicated that selection, sampling, and/or priority effects could shape the consortium structure. The MELMC can degrade up to ∼13% of corn stover, consuming mostly its (hemi)cellulosic fraction. Tests with chromogenic substrates showed that the MELMC secretes an array of endoenzymes able to degrade xylan, arabinoxylan, carboxymethyl cellulose, and wheat straw. Additionally, the metagenomic profile inferred from the phylogenetic composition along with an analysis of carbohydrate-active enzymes of 20 bacterial genomes support the potential of the MELMC to deconstruct plant polysaccharides. This capacity was mainly attributed to the presence of Paenibacillus sp.IMPORTANCE The significance of our study mainly lies in the development of a combined top-down enrichment strategy (i.e., dilution to stimulation coupled to dilution to extinction) to build a minimal and versatile lignocellulolytic microbial consortium. We demonstrated that mainly two selectively enriched bacterial species (Pseudomonas sp. and Paenibacillus sp.) are required to drive the effective degradation of plant polymers. Our findings can guide the design of a synthetic bacterial consortium that could improve saccharification (i.e., the release of sugars from agricultural plant residues) processes in biorefineries. In addition, they can help to expand our ecological understanding of plant biomass degradation in enriched bacterial systems.


Asunto(s)
Lignina/metabolismo , Consorcios Microbianos , Bacterias/genética , Bacterias/metabolismo , Bosques , Genoma Bacteriano , Metagenómica , ARN Ribosómico 16S , Microbiología del Suelo
8.
Front Microbiol ; 12: 744075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35035382

RESUMEN

Traditionally, starting inoculants have been applied to improve ensiling of forage used for livestock feed. Here, we aimed to build up a bioinoculant composed of lactic acid-producing and lignocellulolytic bacteria (LB) derived from the Megathyrsus maximus (guinea grass) phyllosphere. For this, the dilution-to-stimulation approach was used, including a sequential modification of the starting culture medium [Man, Rogosa, and Sharpe (MRS) broth] by addition of plant biomass (PB) and elimination of labile carbon sources. Along 10 growth-dilution steps (T1-T10), slight differences were observed in terms of bacterial diversity and composition. After the sixth subculture, the consortium started to degrade PB, decreasing its growth rate. The co-existence of Enterobacteriales (fast growers and highly abundance), Actinomycetales, Bacillales, and Lactobacillales species was observed at the end of the selection process. However, a significant structural change was noticed when the mixed consortium was cultivated in higher volume (500ml) for 8days, mainly increasing the proportion of Paenibacillaceae populations. Interestingly, Actinomycetales, Bacillales, and Lactobacillales respond positively to a pH decrease (4-5), suggesting a relevant role within a further silage process. Moreover, gene-centric metagenomic analysis showed an increase of (hemi)cellulose-degrading enzymes (HDEs) during the enrichment strategy. Reconstruction of metagenome-assembled genomes (MAGs) revealed that Paenibacillus, Cellulosimicrobium, and Sphingomonas appear as key (hemi)cellulolytic members (harboring endo-glucanases/xylanases, arabinofuranosidases, and esterases), whereas Enterococcus and Cellulosimicrobium have the potential to degrade oligosaccharides, metabolize xylose and might produce lactic acid through the phosphoketolase (PK) pathway. Based on this evidence, we conclude that our innovative top-down strategy enriched a unique bacterial consortium that could be useful in biotechnological applications, including the development/design of a synthetic bioinoculant to improve silage processes.

9.
mSystems ; 5(5)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082281

RESUMEN

Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Such an effort calls for a multidisciplinary and collaborative approach, involving chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant scientists, conservation biologists, and stakeholders, and it requires standardized methods to support reproducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is focused around three urgent priorities and three approaches for advancing mangrove microbiome research.

10.
Microb Ecol ; 80(4): 885-896, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32572536

RESUMEN

An exploration of the ligninolytic potential of lignocellulolytic microbial consortia can improve our understanding of the eco-enzymology of lignin conversion in nature. In this study, we aimed to detect enriched lignin-transforming enzymes on metagenomes from three soil-derived microbial consortia that were cultivated on "pre-digested" plant biomass (wheat straw, WS1-M; switchgrass, SG-M; and corn stover, CS-M). Of 60 selected enzyme-encoding genes putatively involved in lignin catabolism, 20 genes were significantly abundant in WS1-M, CS-M, and/or SG-M consortia compared with the initial forest soil inoculum metagenome (FS1). These genes could be involved in lignin oxidation (e.g., superoxide dismutases), oxidative stress responses (e.g., catalase/peroxidases), generation of protocatechuate (e.g., vanAB genes), catabolism of gentisate, catechol and 3-phenylpropionic acid (e.g., gentisate 1,2-dioxygenases, muconate cycloisomerases, and hcaAB genes), the beta-ketoadipate pathway (e.g., pcaIJ genes), and tolerance to lignocellulose-derived inhibitors (e.g., thymidylate synthases). The taxonomic affiliation of 22 selected lignin-transforming enzymes from WS1-M and CS-M consortia metagenomes revealed that Pseudomonadaceae, Alcaligenaceae, Sphingomonadaceae, Caulobacteraceae, Comamonadaceae, and Xanthomonadaceae are the key bacterial families in the catabolism of lignin. A predictive "model" was sketched out, where each microbial population has the potential to metabolize an array of aromatic compounds through different pathways, suggesting that lignin catabolism can follow a "task division" strategy. Here, we have established an association between functions and taxonomy, allowing a better understanding of lignin transformations in soil-derived lignocellulolytic microbial consortia, and pinpointing some bacterial taxa and catabolic genes as ligninolytic trait-markers.


Asunto(s)
Bacterias/enzimología , Lignina/metabolismo , Metagenoma , Consorcios Microbianos , Microbiología del Suelo , Bacterias/genética , Biomasa , Metagenómica , Panicum/microbiología , Triticum/microbiología , Zea mays/microbiología
11.
Genome Biol Evol ; 12(4): 325-344, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068849

RESUMEN

The fungal-interactive (fungiphilic) strains BS001, BS007, BS110, and BS437 have previously been preliminarily assigned to the species Paraburkholderia terrae. However, in the (novel) genus Paraburkholderia, an as-yet unresolved subgroup exists, that clusters around Paraburkholderia hospita (containing the species P. terrae, P. hospita, and Paraburkholderia caribensis). To shed light on the precise relationships across the respective type strains and the novel fungiphiles, we here compare their genomic and ecophysiological features. To reach this goal, the genomes of the three type strains, with sizes ranging from 9.0 to 11.5 Mb, were de novo sequenced and the high-quality genomes analyzed. Using whole-genome, ribosomal RNA and marker-gene-concatenate analyses, close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T, versus more remote relationships to P. caribensis DSM 13236T, were found. All four fungiphilic strains clustered closely to the two-species cluster. Analyses of average nucleotide identities (ANIm) and tetranucleotide frequencies (TETRA) confirmed the close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T (ANIm = 95.42; TETRA = 0.99784), as compared with the similarities of each one of these strains to P. caribensis DSM 13236T. A species cluster was thus proposed. Furthermore, high similarities of the fungiphilic strains BS001, BS007, BS110, and BS437 with this cluster were found, indicating that these strains also make part of it, being closely linked to P. hospita DSM 17164T (ANIm = 99%; TETRA = 0.99). We propose to coin this cluster the P. hospita species cluster (containing P. hospita DSM 17164T, P. terrae DSM 17804T, and strains BS001, BS007, BS110, and BS437), being clearly divergent from the closely related species P. caribensis (type strain DSM 13236T). Moreover, given their close relatedness to P. hospita DSM 17164T within the cluster, we propose to rename the four fungiphilic strains as members of P. hospita. Analysis of migratory behavior along with fungal growth through soil revealed both P. terrae DSM 17804T and P. hospita DSM 17164T (next to the four fungiphilic strains) to be migration-proficient, whereas P. caribensis DSM 13236T was a relatively poor migrator. Examination of predicted functions across the genomes of the seven investigated strains, next to several selected additional ones, revealed the common presence of features in the P. hospita cluster strains that are potentially important in interactions with soil fungi. Thus, genes encoding specific metabolic functions, biofilm formation (pelABCDEFG, pgaABCD, alginate-related genes), motility/chemotaxis, type-4 pili, and diverse secretion systems were found.


Asunto(s)
Burkholderiaceae/genética , Hongos/genética , Genoma Bacteriano , Genoma Fúngico , Genómica/métodos , Burkholderiaceae/crecimiento & desarrollo , Burkholderiaceae/metabolismo , Ecología , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Filogenia , Microbiología del Suelo , Especificidad de la Especie
12.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769802

RESUMEN

Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.


Asunto(s)
Ascomicetos/metabolismo , Lignina/metabolismo , Consorcios Microbianos , Ascomicetos/enzimología , Ascomicetos/genética , Citrobacter freundii/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Sphingobacterium/metabolismo , Triticum/metabolismo
13.
Biotechnol Biofuels ; 12: 229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572496

RESUMEN

BACKGROUND: Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). RESULTS: The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. CONCLUSIONS: We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.

14.
AMB Express ; 9(1): 85, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197616

RESUMEN

The nixtamalized maize pericarp (NMP) is a plentiful by-product of the tortilla industry and an important source of fermentable sugars. The aim of this study was to describe the degradation profile of NMP by the action of a consortium (PM-06) obtained from the native microbial community of this residue. The degradation was analyzed in terms of the changes in the community dynamics, production of enzymes (endo-xylanase and endo-cellulase), physicochemical parameters, and substrate chemical and microstructural characteristics, to understand the mechanisms behind the process. The consortium PM-06 degraded 86.8 ± 3.3% of NMP after 192 h of growth. Scanning electron microscopy images, and the composition and weight of the residual solids, showed that degradation was sequential starting with the consumption of hemicellulose. Xylanase was the highest enzyme activity produced, with a maximum value of 12.45 ± 0.03 U mL-1. There were fluctuations in the pH during the NMP degradation, starting with the acidification of the culture media and finishing with a pH close to 8.5. The most abundant species in the consortium, at the moment of maximum degradation activity, were Aneurinibacillus migulanus, Paenibacillus macerans, Bacillus coagulans, Microbacterium sp. LCT-H2, and Bacillus thuringiensis. The diversity of PM-06 provided metabolic abilities that in combination helped to produce an efficient process. The consortium PM-06 generated a set of different tools that worked coordinated to increase the substrate availability through the solubilization of components and elimination of structural diffusion barriers. This is the first report about the degradation of NMP using a microbial consortium.

15.
Sci Rep ; 8(1): 11795, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087358

RESUMEN

Aplysina aerophoba is an emerging model marine sponge, with a well-characterized microbial community in terms of diversity and structure. However, little is known about the expressed functional capabilities of its associated microbes. Here, we present the first metaproteomics-based study of the microbiome of A. aerophoba. We found that transport and degradation of halogenated and chloroaromatic compounds are common active processes in the sponge microbiomes. Our data further reveal that the highest number of proteins were affiliated to a sponge-associated Tectomicrobium, presumably from the family Entotheonellaceae, as well as to the well-known symbiont "Candidatus Synechococcus spongiarium", suggesting a high metabolic activity of these two microorganisms in situ. Evidence for nitric oxide (NO) conversion to nitrous oxide was consistently observed for Tectomicrobia across replicates, by production of the NorQ protein. Moreover, we found a potential energy-yielding pathway through CO oxidation by putative Chloroflexi bacteria. Finally, we observed expression of enzymes that may be involved in the transformation of chitin, glycoproteins, glycolipids and glucans into smaller molecules, consistent with glycosyl hydrolases predicted from analyses of the genomes of Poribacteria sponge symbionts. Thus, this study provides crucial links between expressed proteins and specific members of the A. aerophoba microbiome.


Asunto(s)
Organismos Acuáticos , Bacterias/metabolismo , Proteínas Bacterianas/biosíntesis , Regulación de la Expresión Génica/fisiología , Poríferos/microbiología , Simbiosis/fisiología , Animales , Organismos Acuáticos/metabolismo , Organismos Acuáticos/microbiología , Proteómica
16.
Front Microbiol ; 9: 299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535687

RESUMEN

Plant biomass (PB) is an important source of sugars useful for biofuel production, whose degradation efficiency depends on synergistic and dynamic interactions of different enzymes. Here, using a metatranscriptomics-based approach, we explored the expression of PB-degrading enzymes in a five-species synthetic bacterial consortium during cultivation on sugarcane bagasse as a unique carbon source. By analyzing the temporal expression dynamics of a selection of enzymes we revealed the functional role of each consortium member and disentangled the potential interactions between them. Based on normalized expression values and the taxonomic affiliation of all the transcripts within thirty carbohydrate-active enzyme (CAZy) families, we observed a successional profile. For instance, endo-glucanases/-xylanases (e.g., GH8, GH10, and GH16) were significantly expressed at 12 h, whereas exo-glucanases (e.g., GH6 and GH48) and α-arabinosidases/ß-xylosidases (e.g., GH43) were highly expressed at 48 h. Indeed, a significant peak of extracellular ß-xylosidase activity was observed at this stage. Moreover, we observed a higher expression of several CAZy families at 12-48 h, suggesting easy access to the main plant polysaccharides. Based on this evidence, we predicted that the highest level of collaboration between strains takes place at the initial stages of growth. Here, Paenibacillus, Brevundimonas, and Chryseobacterium were the most important contributors, whereas Stenotrophomonas was highly active at the end of the culture (96-192 h) without contributing to a large extent to the expression of lignocellulolytic enzymes. Our results contribute to the understanding of enzymatic and ecological mechanisms within PB-degrading microbial consortia, yielding new perspectives to improve the PB saccharification processes.

17.
Trends Microbiol ; 25(10): 788-796, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28648267

RESUMEN

Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed.


Asunto(s)
Consorcios Microbianos/fisiología , Plantas/microbiología , Biocombustibles/microbiología , Biomasa , Ecología/métodos , Microbiología del Suelo
18.
Genome Announc ; 5(4)2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28126934

RESUMEN

Here, we report the first draft genome sequence (42.38 Mb containing 13,657 genes) of Coniochaeta ligniaria NRRL 30616, an ascomycete with biotechnological relevance in the bioenergy field given its high potential for bioabatement of toxic furanic compounds in plant biomass hydrolysates and its capacity to degrade lignocellulosic material.

19.
Appl Microbiol Biotechnol ; 100(24): 10463-10477, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27418359

RESUMEN

The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation of protein-encoding sequences, members of the Bacteroidetes (e.g. Chryseobacterium, Weeksella, Flavobacterium and Sphingobacterium) were preferentially selected on WS1-M, whereas SG-M and CS-M favoured members of the Proteobacteria (e.g. Caulobacter, Brevundimonas, Stenotrophomonas and Xanthomonas). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29, GH28, GH16, GH4 and GH92). In addition, proteins of families AA6, AA10 and AA2 were detected. Analysis of secreted protein fractions (metasecretome) for each selected microbial consortium mainly showed the presence of enzymes able to degrade arabinan, arabinoxylan, xylan, ß-glucan, galactomannan and rhamnogalacturonan. Notably, these metasecretomes contain enzymes that enable us to produce oligosaccharides directly from wheat straw, sugarcane bagasse and willow. Thus, the underlying microbial consortia constitute valuable resources for the production of enzyme cocktails for the efficient saccharification of plant biomass.


Asunto(s)
Bacterias/clasificación , Lignina/metabolismo , Metagenómica , Consorcios Microbianos , Aerobiosis , Bacterias/enzimología , Bacterias/genética , Biotransformación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Enzimas/metabolismo , Panicum/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Triticum/química , Zea mays/química
20.
Appl Microbiol Biotechnol ; 100(17): 7713-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27170322

RESUMEN

Despite multiple research efforts, the current strategies for exploitation of lignocellulosic plant matter are still far from optimal, being hampered mostly by the difficulty of degrading the recalcitrant parts. An interesting approach is to use lignocellulose-degrading microbial communities by using different environmental sources of microbial inocula. However, it remains unclear whether the inoculum source matters for the degradation process. Here, we addressed this question by verifying the lignocellulose degradation potential of wheat (Triticum aestivum) straw by microbial consortia generated from three different microbial inoculum sources, i.e., forest soil, canal sediment and decaying wood. We selected these consortia through ten sequential-batch enrichments by dilution-to-stimulation using wheat straw as the sole carbon source. We monitored the changes in microbial composition and abundance, as well as their associated degradation capacity and enzymatic activities. Overall, the microbial consortia developed well on the substrate, with progressively-decreasing net average generation times. Each final consortium encompassed bacterial/fungal communities that were distinct in composition but functionally similar, as they all revealed high substrate degradation activities. However, we did find significant differences in the metabolic diversities per consortium: in wood-derived consortia cellobiohydrolases prevailed, in soil-derived ones ß-glucosidases, and in sediment-derived ones several activities. Isolates recovered from the consortia showed considerable metabolic diversities across the consortia. This confirmed that, although the overall lignocellulose degradation was similar, each consortium had a unique enzyme activity pattern. Clearly, inoculum source was the key determinant of the composition of the final microbial degrader consortia, yet with varying enzyme activities. Hence, in accord with Beyerinck's, "everything is everywhere, the environment selects" the source determines consortium composition.


Asunto(s)
Bacterias/metabolismo , Celulasas/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Hongos/metabolismo , Lignina/metabolismo , Consorcios Microbianos , Triticum/metabolismo , Bacterias/enzimología , Bacterias/genética , Hongos/enzimología , Hongos/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA