Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell ; 42(3): 413-428.e7, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38402609

RESUMEN

KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.


Asunto(s)
Acetonitrilos , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas p21(ras) , Genes ras , Mutación
2.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38284990

RESUMEN

Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, exhibits strong cancer plasticity. We find that ALK rearrangement is detectable in 5.1-7.5% of human LUAS, and transgenic expression of EML4-ALK drives lung adenocarcinoma (LUAD) formation initially and squamous transition at late stage. We identify club cells as the main cell-of-origin for squamous transition. Through recapitulating lineage transition in organoid system, we identify JAK-STAT signaling, activated by EML4-ALK phase separation, significantly promotes squamous transition. Integrative study with scRNA-seq and immunostaining identify a plastic cell subpopulation in ALK-rearranged human LUAD showing squamous biomarker expression. Moreover, those relapsed ALK-rearranged LUAD show notable upregulation of squamous biomarkers. Consistently, mouse squamous tumors or LUAD with squamous signature display certain resistance to ALK inhibitor, which can be overcome by combined JAK1/2 inhibitor treatment. This study uncovers strong plasticity of ALK-rearranged tumors in orchestrating phenotypic transition and drug resistance and proposes a potentially effective therapeutic strategy.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Pulmón , Proteínas Tirosina Quinasas Receptoras , Proteínas de Fusión Oncogénica/genética
4.
Toxins (Basel) ; 15(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37999503

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is a foodborne zoonotic pathogen that causes diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) worldwide. Since the infection can be asymptomatic, the circulation of STEC in some asymptomatic carriers, especially in healthy-food-related professionals, is not yet well understood. In this study, a total of 3987 anal swab samples from asymptomatic food handlers were collected, and ten swabs recovered STEC strains (0.251%). Of the ten STEC isolates, seven serotypes and eight sequence types (ST) were determined using whole genome sequencing (WGS). Two stx1 subtypes (stx1a and stx1c) and four stx2 subtypes (stx2a, stx2b, stx2d, and stx2e) were detected. Seven different insertion sites were found in fourteen Stx prophages, and the dmsB and yfhL were the newly identified insertion sites. The ten strains showed the variable Stx transcription levels after the mitomycin C induction. The whole-genome phylogeny indicated that the strains from the asymptomatic food handlers were genetically distant from the strains of HUS patients. The STEC isolates circulating in asymptomatic carriers might pose a low potential to cause disease.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Diarrea , Serogrupo , Alimentos , Proteínas de Escherichia coli/genética
5.
Int J Biol Macromol ; 253(Pt 1): 126536, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37634775

RESUMEN

The adverse effects of heavy metal pollutants in wastewater have threatened human health in recent decades. Therefore, the development of absorbents for such pollutants is essential to overcome these problems. Electrospun nanofibers are often used for wastewater treatment owing to their high porosity and high specific surface area. Zein from plants and collagen from animals are vulnerable to moisture, which limits its broad application in practice. However fully biodegradable polyvinyl alcohol (PVA), which is soluble in water, can be mixed with protein individually to overcome the limitation. In this work, the two proteins described above and PVA were combined to prepare protein nanofibers by electrospinning technology, which could achieve adsorption of Cu2+. As the protein content increased, the adsorption properties of the obtained nanofibers for Cu2+ showed a rising and then decreasing trend, with the highest point at 50 % of protein content, especially the collagen nanofibers, which reached 24.62 mg/g. Both protein nanofibers reached adsorption equilibrium after 15 h, but overall, collagen nanofibers showed a superior adsorption performance for Cu2+ than that by zein nanofibers. In the process of Cu2+ adsorption by protein nanofibers, both physical and chemical effect existed, and the physical effect played the leading role.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nanofibras , Contaminantes Químicos del Agua , Zeína , Humanos , Alcohol Polivinílico/química , Nanofibras/química , Adsorción , Iones , Colágeno , Contaminantes Químicos del Agua/química
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 948-955, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249335

RESUMEN

Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancer cases and features a strong predilection for early metastasis and extremely poor prognosis. Despite being highly sensitive to chemotherapy and/or radiotherapy initially, most SCLC patients develop therapeutic resistance within one year and die of distant metastases. Multiple studies have revealed the high heterogeneity and strong plasticity of SCLC associated with frequent metastases and early development of therapeutic resistance as well as poor clinical outcome. Importantly, different SCLC subtypes are associated with different therapeutic vulnerabilities, and the inflamed subtype tends to have the best response to immunotherapy, which highlights the importance of precision medicine in the clinic. Here, we review recent advances in SCLC heterogeneity and plasticity and their link to distant metastases and chemotherapy resistance. We hope that a better understanding of the molecular mechanisms underlying SCLC malignant progression will help to develop better intervention strategies for this deadly disease.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Neoplasias Pulmonares/patología
7.
Int J Biol Macromol ; 242(Pt 1): 124608, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116850

RESUMEN

The brittle feature of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is the major challenge that strongly restricts its application at present. Successfully synthesized bio-based engineering polyester elastomers (BEPE) were combined with PHBV to create entirely bio-composites with the intention of toughening PHBV. Herein, the 2,2-Bis(hydroxymethyl)-propionic acid (DMPA) was grafted onto microcrystalline cellulose (MCC) and then further transformed into hyperbranched polyester structure via polycondensation. The modified MCC, named MCHBP, had plenty of terminal hydroxyl groups, which get dispersed between PHBV and BEPE. Besides, a large number of terminal hydroxyl groups of MCHBP can interact with the carbonyl groups of PHBV or BEPE in a wide range of hydrogen bonds, and subsequently increase the adhesion and stress transfer between the PHBV and BEPE. The tensile toughness and the elongation at break of the PHBV/BEPE composites with 0.5phr MCHBP were improved by 559.7 % and 221.8 % in comparison to those of PHBV/BEPE composites. Results also showed that MCHBP can play a heterogeneous nucleation effect on the crystallization of PHBV. Therefore, this research can address the current issue of biopolymers' weak mechanical qualities and may have uses in food packaging.


Asunto(s)
Elastómeros , Poliésteres , Ensayo de Materiales , Poliésteres/química , Biopolímeros
8.
Signal Transduct Target Ther ; 8(1): 16, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36627278

RESUMEN

Lkb1 deficiency confers the Kras-mutant lung cancer with strong plasticity and the potential for adeno-to-squamous transdifferentiation (AST). However, it remains largely unknown how Lkb1 deficiency dynamically regulates AST. Using the classical AST mouse model (Kras LSL-G12D/+;Lkb1flox/flox, KL), we here comprehensively analyze the temporal transcriptomic dynamics of lung tumors at different stages by dynamic network biomarker (DNB) and identify the tipping point at which the Wnt signaling is abruptly suppressed by the excessive accumulation of reactive oxygen species (ROS) through its downstream effector FOXO3A. Bidirectional genetic perturbation of the Wnt pathway using two different Ctnnb1 conditional knockout mouse strains confirms its essential role in the negative regulation of AST. Importantly, pharmacological activation of the Wnt pathway before but not after the tipping point inhibits squamous transdifferentiation, highlighting the irreversibility of AST after crossing the tipping point. Through comparative transcriptomic analyses of mouse and human tumors, we find that the lineage-specific transcription factors (TFs) of adenocarcinoma and squamous cell carcinoma form a "Yin-Yang" counteracting network. Interestingly, inactivation of the Wnt pathway preferentially suppresses the adenomatous lineage TF network and thus disrupts the "Yin-Yang" homeostasis to lean towards the squamous lineage, whereas ectopic expression of NKX2-1, an adenomatous lineage TF, significantly dampens such phenotypic transition accelerated by the Wnt pathway inactivation. The negative correlation between the Wnt pathway and AST is further observed in a large cohort of human lung adenosquamous carcinoma. Collectively, our study identifies the tipping point of AST and highlights an essential role of the ROS-Wnt axis in dynamically orchestrating the homeostasis between adeno- and squamous-specific TF networks at the AST tipping point.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animales , Ratones , Humanos , Vía de Señalización Wnt/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transdiferenciación Celular/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/patología , Pulmón/patología , Proteínas Serina-Treonina Quinasas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Ratones Noqueados , Estrés Oxidativo/genética
9.
Natl Sci Rev ; 9(7): nwab232, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35967587

RESUMEN

Small-cell lung cancer (SCLC) is a recalcitrant cancer characterized by high metastasis. However, the exact cell type contributing to metastasis remains elusive. Using a Rb1 L/L /Trp53 L/L mouse model, we identify the NCAMhiCD44lo/- subpopulation as the SCLC metastasizing cell (SMC), which is progressively transitioned from the non-metastasizing NCAMloCD44hi cell (non-SMC). Integrative chromatin accessibility and gene expression profiling studies reveal the important role of the SWI/SNF complex, and knockout of its central component, Brg1, significantly inhibits such phenotypic transition and metastasis. Mechanistically, TAZ is silenced by the SWI/SNF complex during SCLC malignant progression, and its knockdown promotes SMC transition and metastasis. Importantly, ectopic TAZ expression reversely drives SMC-to-non-SMC transition and alleviates metastasis. Single-cell RNA-sequencing analyses identify SMC as the dominant subpopulation in human SCLC metastasis, and immunostaining data show a positive correlation between TAZ and patient prognosis. These data uncover high SCLC plasticity and identify TAZ as the key molecular switch in orchestrating SCLC phenotypic transition and metastasis.

10.
Int J Biol Macromol ; 220: 1163-1176, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030981

RESUMEN

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a type of promising bio-based thermoplastic for food packaging but find restricted industrial applications due to its brittleness and poor processability that is caused by its large spherulite sizes. In this study, for the purpose of toughening PHBV, bio-based engineering polyester elastomers (BEPE) were synthesized and blended with PHBV to prepare fully bio-based blends. In order to improve the compatibility and toughness of the BEPE/PHBV blends, epoxy-terminated hyperbranched polyesters (EHBP) were synthesized, which could be homogeneously dispersed into the PHBV/BEPE blends and improve the compatibility between the two phases of the matrix. The results showed that compared to those of the PHBV/BEPE blends, the elongation at break, impact strength and tensile toughness of the PHBV/BEPE blends with 3.0phr EHBP were enhanced by 134.2 %, 76.8 %, and 123.5 %, respectively. The crystallization study demonstrated the crystallization rate of PHBV/BEPE blends decreased due to the addition of EHBP. The reasons lied in that the addition of EHBP leads to chemical cross-linking between PHBV and BEPE. Meanwhile, the formation of hydrogen bonding, co-crystallization and chain entanglement increased the adhesion between PHBV and BEΡE, which generated the superior toughness of the blends.


Asunto(s)
Elastómeros , Poliésteres , Resinas Epoxi , Hidroxibutiratos , Ácidos Pentanoicos/química , Poliésteres/química
11.
Front Microbiol ; 13: 772489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602015

RESUMEN

On September 21, 2019, the Shenzhen and Dongguan Centers for Disease Control and Prevention received notification of a large cluster of suspected gastroenteritis involving primarily children who sought medical care at hospitals throughout two adjacent cities in China, Shenzhen, and Dongguan. A joint outbreak response was promptly initiated across jurisdictions in a concerted effort between clinical microbiologists, epidemiologists, and public health scientists. Concurrently, multiplex PCRs were used for rapid laboratory diagnosis of suspected cases; epidemiological investigations were conducted to identify the outbreak source, complemented by near real-time multicenter whole-genome analyses completed within 34 h. Epidemiological evidence indicated that all patients had consumed egg sandwiches served on September 20 as snacks to children and staff at a nursery in Dongguan, located near Shenzhen. Salmonella Enteritidis was isolated from case-patients, food handlers, kitchenware, and sandwiches with kitchen-made mayonnaise. Whole-genome single-nucleotide polymorphism (SNP)-based phylogenetic analysis demonstrated a well-supported cluster with pairwise distances of ≤1 SNP between genomes for outbreak-associated isolates, providing the definitive link between all samples. In comparison with historical isolates from the same geographical region, the minimum pairwise distance was >14 SNPs, suggesting a non-local outbreak source. Genomic source tracing revealed the possible transmission dynamics of a S. Enteritidis clone throughout a multi-provincial egg distribution network. The efficiency and scale with which multidisciplinary and integrated approaches were coordinated in this foodborne disease outbreak response was unprecedented in China, leading to the timely intervention of a large cross-jurisdiction Salmonella outbreak.

12.
Nat Cancer ; 3(5): 614-628, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35449308

RESUMEN

Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Línea Celular Tumoral , Farnesiltransferasa/uso terapéutico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Ácido Mevalónico/farmacología , Fosfatos de Poliisoprenilo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
14.
Natl Sci Rev ; 8(10): nwab014, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34858604

RESUMEN

Somatic mutations of the chromatin remodeling gene ARID2 are observed in ∼7% of human lung adenocarcinomas (LUADs). However, the role of ARID2 in the pathogenesis of LUADs remains largely unknown. Here we find that ARID2 expression is decreased during the malignant progression of both human and mice LUADs. Using two KrasG12D -based genetically engineered murine models, we demonstrate that ARID2 knockout significantly promotes lung cancer malignant progression and shortens overall survival. Consistently, ARID2 knockdown significantly promotes cell proliferation in human and mice lung cancer cells. Through integrative analyses of ChIP-Seq and RNA-Seq data, we find that Hspa1a is up-regulated by Arid2 loss. Knockdown of Hspa1a specifically inhibits malignant progression of Arid2-deficient but not Arid2-wt lung cancers in both cell lines as well as animal models. Treatment with an HSPA1A inhibitor could significantly inhibit the malignant progression of lung cancer with ARID2 deficiency. Together, our findings establish ARID2 as an important tumor suppressor in LUADs with novel mechanistic insights, and further identify HSPA1A as a potential therapeutic target in ARID2-deficient LUADs.

15.
Cancer Immunol Res ; 9(11): 1298-1315, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462284

RESUMEN

Substantial progress has been made in understanding how tumors escape immune surveillance. However, few measures to counteract tumor immune evasion have been developed. Suppression of tumor antigen expression is a common adaptive mechanism that cancers use to evade detection and destruction by the immune system. Epigenetic modifications play a critical role in various aspects of immune invasion, including the regulation of tumor antigen expression. To identify epigenetic regulators of tumor antigen expression, we established a transplantable syngeneic tumor model of immune escape with silenced antigen expression and used this system as a platform for a CRISPR-Cas9 suppressor screen for genes encoding epigenetic modifiers. We found that disruption of the genes encoding either of the chromatin modifiers activating transcription factor 7-interacting protein (Atf7ip) or its interacting partner SET domain bifurcated histone lysine methyltransferase 1 (Setdb1) in tumor cells restored tumor antigen expression. This resulted in augmented tumor immunogenicity concomitant with elevated endogenous retroviral (ERV) antigens and mRNA intron retention. ERV disinhibition was associated with a robust type I interferon response and increased T-cell infiltration, leading to rejection of cells lacking intact Atf7ip or Setdb1. ATF7IP or SETDB1 expression inversely correlated with antigen processing and presentation pathways, interferon signaling, and T-cell infiltration and cytotoxicity in human cancers. Our results provide a rationale for targeting Atf7ip or Setdb1 in cancer immunotherapy.


Asunto(s)
Antígenos de Neoplasias/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias/genética , Proteínas Represoras/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Humanos , Ratones , Ratones Desnudos
16.
J Genet Genomics ; 48(7): 571-581, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34373217

RESUMEN

Small cell lung cancer (SCLC) is the most aggressive lung cancer with high heterogeneity. Mouse SCLC cells derived from the Rb1L/L/Trp53L/L (RP) autochthonous mouse model grew as adhesion or suspension in cell culture, and the adhesion cells are defined as non-neuroendocrine (non-NE) SCLC cells. Here, we uncover the heterogenous subpopulations within the non-NE cells and referred to them as mesenchymal-like (Mes) and epithelial-like (Epi) SCLC cells. The Mes cells have increased capability to form colonies in soft agar and harbored stronger metastatic capability in vivo when compared with the Epi cells. Gene Set Enrichment Analysis reveals that the transforming growth factor (TGF)-ß signaling is enriched in the Mes cells. Importantly, inhibition of the TGF-ß signaling through ectopic expression of dominant-negative Tgfbr2 (Tgfbr2-DN) or treatment with Tgfbr1 inhibitor SD-208 consistently abrogates tumor metastasis in nude mouse allograft assays. Moreover, genetic deletion of Tgfbr2 or Smad4, the key components of the TGF-ß signaling pathway, dramatically attenuates SCLC metastasis in the RP autochthonous mouse model. Collectively, our results uncover the high heterogeneity in non-NE SCLC cells and highlight an important role of TGF-ß signaling in promoting SCLC metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas
17.
J Genet Genomics ; 48(7): 640-651, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34167917

RESUMEN

Small cell lung cancer (SCLC) is a phenotypically heterogeneous disease with an extremely poor prognosis, which is mainly attributed to the rapid development of resistance to chemotherapy. However, the relation between the growth phenotypes and chemo-resistance of SCLC remains largely unclear. Through comprehensive bioinformatic analyses, we found that the heterogeneity of SCLC phenotype was significantly associated with different sensitivity to chemotherapy. Adherent or semiadherent SCLC cells were enriched with activation of the PI3K/Akt/mTOR pathway and were highly chemoresistant. Mechanistically, activation of the PI3K/Akt/mTOR pathway promotes the phenotypic transition from suspension to adhesion growth pattern and confers SCLC cells with chemo-resistance. Such chemo-resistance could be largely overcome by combining chemotherapy with PI3K/Akt/mTOR pathway inhibitors. Our findings support that the PI3K/Akt/mTOR pathway plays an important role in SCLC phenotype transition and chemo-resistance, which holds important clinical implications for improving SCLC treatment.


Asunto(s)
Carcinoma Pulmonar de Células Pequeñas
18.
J Genet Genomics ; 48(4): 268-276, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33896738

RESUMEN

Adult lung is a highly quiescent organ, with extremely low cell turnover frequency. However, emerging evidences support the occurrence of repair and regeneration in pulmonary epithelia in response to various injuries. Lung regeneration mainly depends on the proliferation of regionally distributed pulmonary stem cells that re-enter the cell cycle. Genetic lineage-tracing approaches help to track the lung epithelial differentiation and/or de-differentiation path, and single-cell transcriptomic technique reveals the essential molecular signaling involved in lung regeneration. Dysregulation of the molecular signaling that balances quiescence and self-renewal leads to the transformation of lung stem cells, and thus promotes lung cancer development. Interestingly, different subtypes of lung cancer share common cells of origin and the pathological transition among various subtypes is responsible for drug resistance in the clinic. In this review, we summarize the recent understanding of lung stem cells in regeneration and tumorigenesis as well as related molecular mechanisms, with the hope to provide helpful insights for clinical treatments of respiratory diseases.


Asunto(s)
Neoplasias Pulmonares/genética , Pulmón/crecimiento & desarrollo , Regeneración/genética , Células Madre/metabolismo , Carcinogénesis/genética , Diferenciación Celular/genética , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Transducción de Señal/genética , Células Madre/patología
19.
Front Chem ; 9: 810147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004626

RESUMEN

Numerous efforts have been devoted to investigating the catalytic events and disclosing the catalytic nature of the metal-carbon interaction interface. Nevertheless, the local deconstruction of catalytically active metal-carbon interface was still missing. Herein, the selected four types of landmark catalytic paradigms were highlighted, which was expected to clarify their essence and thus simplify the catalytic scenarios of the metal-carbon interface-carbon-supported metal nanoparticles, carbon-confined single-atom sites, chainmail catalysis, and the Mott-Schottky effect. The potential challenges and new opportunities were also proposed in the field. This perspective is believed to give an in-depth understanding of the catalytic nature of the metal-carbon interaction interface and in turn provide rational guidance to the delicate design of novel high-performance carbon-supported metal catalysts.

20.
Phys Chem Chem Phys ; 22(30): 17394-17400, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32706005

RESUMEN

In this study, X-ray photoelectron spectroscopy is used to probe the impact of the N3-substituted alkyl group on the electronic environment of the cation and the anion by comparing two types of imidazolium cations, 1-alkyl-3-butylimidazolium and 1-alkyl-3-methylimidazolium. Due to the more intense inductive effect changing from methyl to butyl, the electronic environment of the cationic nitrogen can be significantly affected, which is reflected in a shift of N 1s binding energy. The magnitude of the binding energy shift is found to be more pronounced in the case of the less basic anion and inversely proportional to the basicity of the anion. The increase of the N3-substituted alkyl chain length can also influence the charge-transfer effect from the anion to the cation. This gives rise to a change in the electronic environment of the anion. Such an impact is found to be concentrated on the anion-based component bearing more negative point charges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA