Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Angiogenesis ; 27(1): 5-22, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37103631

RESUMEN

The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development. Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage. During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.


Asunto(s)
COVID-19 , Enfermedades Vasculares , Animales , Humanos , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Células Endoteliales/fisiología
2.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37046617

RESUMEN

Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.

3.
Front Cardiovasc Med ; 10: 1062491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824451

RESUMEN

The role of hypoxia, vascular endothelial injury, and thrombotic inflammation in worsening COVID-19 symptoms has been generally recognized. Damaged vascular endothelium plays a crucial role in forming in situ thrombosis, pulmonary dysfunction, and hypoxemia. Thrombotic inflammation can further aggravate local vascular endothelial injury and affect ventilation and blood flow ratio. According to the results of many studies, obesity is an independent risk factor for a variety of severe respiratory diseases and contributes to high mechanical ventilation rate, high mortality, and slow recovery in COVID-19 patients. This review will explore the mechanisms by which obesity may aggravate the acute phase of COVID-19 and delay long COVID recovery by affecting hypoxia, vascular endothelial injury, and thrombotic inflammation. A systematic search of PubMed database was conducted for papers published since January 2020, using the medical subject headings of "COVID-19" and "long COVID" combined with the following keywords: "obesity," "thrombosis," "endothelial injury," "inflammation," "hypoxia," "treatment," and "anticoagulation." In patients with obesity, the accumulation of central fat restricts the expansion of alveoli, exacerbating the pulmonary dysfunction caused by SARS-CoV-2 invasion, inflammatory damage, and lung edema. Abnormal fat secretion and immune impairment further aggravate the original tissue damage and inflammation diffusion. Obesity weakens baseline vascular endothelium function leading to an early injury and pre-thrombotic state after infection. Enhanced procoagulant activity and microthrombi promote early obstruction of the vascular. Obesity also prolongs the duration of symptoms and increases the risk of sequelae after hospital discharge. Persistent viral presence, long-term inflammation, microclots, and hypoxia may contribute to the development of persistent symptoms, suggesting that patients with obesity are uniquely susceptible to long COVID. Early interventions, including supplemental oxygen, comprehensive antithrombotic therapy, and anti-inflammatory drugs, show effectiveness in many studies in the prevention of serious hypoxia, thromboembolic events, and systemic inflammation, and are therefore recommended to reduce intensive care unit admission, mortality, and sequelae.

5.
Front Immunol ; 13: 992384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466841

RESUMEN

COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.


Asunto(s)
COVID-19 , Trombosis , Humanos , COVID-19/complicaciones , Trombosis/etiología , Anticoagulantes/uso terapéutico , Fosfatidilserinas , Síndrome de Liberación de Citoquinas , Síndrome Post Agudo de COVID-19
6.
Front Immunol ; 13: 955654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248790

RESUMEN

Patients with COVID-19 often have hypoxemia, impaired lung function, and abnormal imaging manifestations in acute and convalescent stages. Alveolar inflammation, pulmonary vasculitis, and thromboembolism synergistically damage the blood-air barrier, resulting in increased pulmonary permeability and gas exchange disorders. The incidence of low platelet counts correlates with disease severity. Platelets are also involved in the impairment of pulmonary microcirculation leading to abnormal lung function at different phases of COVID-19. Activated platelets lose the ability to protect the integrity of blood vessel walls, increasing the permeability of pulmonary microvasculature. High levels of platelet activation markers are observed in both mild and severe cases, short and long term. Therefore, the risk of thrombotic events may always be present. Vascular endothelial injury, immune cells, inflammatory mediators, and hypoxia participate in the high reactivity and aggregation of platelets in various ways. Microvesicles, phosphatidylserine (PS), platelets, and coagulation factors are closely related. The release of various cell-derived microvesicles can be detected in COVID-19 patients. In addition to providing a phospholipid surface for the synthesis of intrinsic factor Xase complex and prothrombinase complex, exposed PS also promotes the decryption of tissue factor (TF) which then promotes coagulant activity by complexing with factor VIIa to activate factor X. The treatment of COVID-19 hypercoagulability and thrombosis still focuses on early intervention. Antiplatelet therapy plays a role in relieving the disease, inhibiting the formation of the hypercoagulable state, reducing thrombotic events and mortality, and improving sequelae. PS can be another potential target for the inhibition of hypercoagulable states.


Asunto(s)
COVID-19 , Coagulantes , Trombosis , Factores de Coagulación Sanguínea , Plaquetas , Factor VIIa , Factor X , Humanos , Mediadores de Inflamación , Factor Intrinseco , Pulmón , Microcirculación , Fosfatidilserinas , Inhibidores de Agregación Plaquetaria , Tromboplastina , Trombosis/etiología
7.
Front Cardiovasc Med ; 9: 957006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990983

RESUMEN

The pandemic respiratory illness SARS-CoV-2 has increasingly been shown to be a systemic disease that can also have profound impacts on the cardiovascular system. Although associated cardiopulmonary sequelae can persist after infection, the link between viral infection and these complications remains unclear. There is now a recognized link between endothelial cell dysfunction and thrombosis. Its role in stimulating platelet activation and thrombotic inflammation has been widely reported. However, the procoagulant role of microparticles (MPs) in COVID-19 seems to have been neglected. As membrane vesicles released after cell injury or apoptosis, MPs exert procoagulant activity mainly by exposing phosphatidylserine (PS) on their lipid membranes. It can provide a catalytic surface for the assembly of the prothrombinase complex. Therefore, inhibiting PS externalization is a potential therapeutic strategy. In this paper, we describe the pathophysiological mechanism by which SARS-CoV-2 induces lung and heart complications through injury of endothelial cells, emphasizing the procoagulant effect of MPs and PS, and demonstrate the importance of early antithrombotic therapy. In addition, we will detail the mechanisms underlying hypoxia, another serious pulmonary complication related to SARS-CoV-2-induced endothelial cells injury and discuss the use of oxygen therapy. In the case of SARS-CoV-2 infection, virus invades endothelial cells through direct infection, hypoxia, imbalance of the RAAS, and cytokine storm. These factors cause endothelial cells to release MPs, form MPs storm, and eventually lead to thrombosis. This, in turn, accelerates hypoxia and cytokine storms, forming a positive feedback loop. Given the important role of thrombosis in the disease, early antithrombotic therapy is an important tool for COVID-19. It may maintain normal blood circulation, accelerating the clearance of viruses, waning the formation of MPs storm, and avoiding disease progression.

8.
Front Immunol ; 13: 862522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464473

RESUMEN

Lung injury may persist during the recovery period of COVID-19 as shown through imaging, six-minute walk, and lung function tests. The pathophysiological mechanisms leading to long COVID have not been adequately explained. Our aim is to investigate the basis of pulmonary susceptibility during sequelae and the possibility that prothrombotic states may influence long-term pulmonary symptoms of COVID-19. The patient's lungs remain vulnerable during the recovery stage due to persistent shedding of the virus, the inflammatory environment, the prothrombotic state, and injury and subsequent repair of the blood-air barrier. The transformation of inflammation to proliferation and fibrosis, hypoxia-involved vascular remodeling, vascular endothelial cell damage, phosphatidylserine-involved hypercoagulability, and continuous changes in serological markers all contribute to post-discharge lung injury. Considering the important role of microthrombus and arteriovenous thrombus in the process of pulmonary functional lesions to organic lesions, we further study the possibility that prothrombotic states, including pulmonary vascular endothelial cell activation and hypercoagulability, may affect long-term pulmonary symptoms in long COVID. Early use of combined anticoagulant and antiplatelet therapy is a promising approach to reduce the incidence of pulmonary sequelae. Essentially, early treatment can block the occurrence of thrombotic events. Because impeded pulmonary circulation causes large pressure imbalances over the alveolar membrane leading to the infiltration of plasma into the alveolar cavity, inhibition of thrombotic events can prevent pulmonary hypertension, formation of lung hyaline membranes, and lung consolidation.


Asunto(s)
COVID-19 , Lesión Pulmonar , Trombofilia , Trombosis , Cuidados Posteriores , COVID-19/complicaciones , Humanos , Lesión Pulmonar/etiología , Alta del Paciente , SARS-CoV-2 , Trombofilia/etiología , Trombosis/etiología , Síndrome Post Agudo de COVID-19
9.
Front Cell Infect Microbiol ; 12: 861703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35449732

RESUMEN

Many discharged COVID-19 patients affected by sequelae experience reduced quality of life leading to an increased burden on the healthcare system, their families and society at large. Possible pathophysiological mechanisms of long COVID include: persistent viral replication, chronic hypoxia and inflammation. Ongoing vascular endothelial damage promotes platelet adhesion and coagulation, resulting in the impairment of various organ functions. Meanwhile, thrombosis will further aggravate vasculitis contributing to further deterioration. Thus, long COVID is essentially a thrombotic sequela. Unfortunately, there is currently no effective treatment for long COVID. This article summarizes the evidence for coagulation abnormalities in long COVID, with a focus on the pathophysiological mechanisms of thrombosis. Extracellular vesicles (EVs) released by various types of cells can carry SARS-CoV-2 through the circulation and attack distant tissues and organs. Furthermore, EVs express tissue factor and phosphatidylserine (PS) which aggravate thrombosis. Given the persistence of the virus, chronic inflammation and endothelial damage are inevitable. Pulmonary structural changes such as hypertension, embolism and fibrosis are common in long COVID. The resulting impaired lung function and chronic hypoxia again aggravates vascular inflammation and coagulation abnormalities. In this article, we also summarize recent research on antithrombotic therapy in COVID-19. There is increasing evidence that early anticoagulation can be effective in improving outcomes. In fact, persistent systemic vascular inflammation and dysfunction caused by thrombosis are key factors driving various complications of long COVID. Early prophylactic anticoagulation can prevent the release of or remove procoagulant substances, thereby protecting the vascular endothelium from damage, reducing thrombotic sequelae, and improving quality of life for long-COVID patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Trombosis , Anticoagulantes/uso terapéutico , COVID-19/complicaciones , Humanos , Hipoxia , Inflamación/complicaciones , Calidad de Vida , SARS-CoV-2 , Trombosis/etiología , Trombosis/prevención & control , Síndrome Post Agudo de COVID-19
10.
Front Microbiol ; 13: 860931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391725

RESUMEN

The intestinal tract, with high expression of angiotensin-converting enzyme 2 (ACE2), is a major site of extrapulmonary infection in COVID-19. During pulmonary infection, the virus enters the bloodstream forming viremia, which infects and damages extrapulmonary organs. Uncontrolled viral infection induces cytokine storm and promotes a hypercoagulable state, leading to systemic microthrombi. Both viral infection and microthrombi can damage the gut-blood barrier, resulting in malabsorption, malnutrition, and intestinal flora entering the blood, ultimately increasing disease severity and mortality. Early prophylactic antithrombotic therapy can prevent these damages, thereby reducing mortality. In this review, we discuss the effects of SARS-CoV-2 infection and intestinal thrombosis on intestinal injury and disease severity, as well as corresponding treatment strategies.

11.
J Periodontol ; 93(2): 287-297, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34155635

RESUMEN

BACKGROUND: Phosphatidylserine (PS) is essential for inflammation-associated thrombogenesis, but the exact effect of PS on the prothrombotic state in periodontitis is uncertain. This study aimed to determine the PS-related procoagulant state in patients with periodontitis. METHODS: A total of 138 patients with periodontitis were examined compared with 42 healthy controls. PS-exposing cells and microvesicles in blood samples were detected by confocal microscopy and flow cytometry. The clotting time assay and prothrombinase complex formation assay were used to measure the procoagulant activity of microvesicles, blood cells and endothelial cells. Periodontal clinical parameters and laboratory characteristics of patients with severe periodontitis were recorded and analyzed at baseline and 6 months after non-surgical periodontal therapy. RESULTS: Total PS-positive (PS+ ) microvesicles and the percentage of PS+ blood cells increased in patients with severe periodontitis compared with patients with moderate/mild periodontitis or healthy controls. Endothelial cells cultured in serum from patients with severe periodontitis expressed more PS compared with those cultured in serum from healthy controls. Specifically, PS exposure on blood cells and endothelial cells significantly decreased after inhibiting the effect of inflammatory cytokines. The elevated levels of PS+ cells and microvesicles in severe periodontitis shortened clotting time and led to increased prothrombinase complex formation. Non-surgical periodontal therapy significantly attenuated the release of microvesicles and the PS exposure of blood cells in severe periodontitis. CONCLUSIONS: The prothrombotic state of patients with periodontitis is mediated by PS+ cells and microvesicles stimulated by elevated levels of inflammatory cytokines.


Asunto(s)
Periodontitis , Fosfatidilserinas , Células Sanguíneas , Citocinas , Células Endoteliales , Humanos , Periodontitis/complicaciones , Periodontitis/terapia , Fosfatidilserinas/farmacología
12.
Am J Transl Res ; 13(8): 8575-8588, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539980

RESUMEN

COVID-19 has swept quickly across the world with a worrisome death toll. SARS-CoV-2 infection induces cytokine storm, acute respiratory distress syndrome with progressive lung damage, multiple organ failure, and even death. In this review, we summarize the pathophysiologic mechanism of neutrophil extracellular traps (NETs) and hypoxia in three main phases, focused on lung inflammation and thrombosis. Furthermore, microparticle storm resulted from apoptotic blood cells are central contributors to the generation and propagation of thrombosis. We focus on microthrombi in the early stage and describe in detail combined antithrombotic with fibrinolytic therapies to suppress microthrombi evolving into clinical events of thrombosis. We further discuss pulmonary hypertension causing plasmin, fibrinogen and albumin, globulin extruding into alveolar lumens, which impedes gas exchange and induces severe hypoxia. Hypoxia in turn induces pulmonary hypertension, and amplifies ECs damage in this pathophysiologic process, which forms a positive feedback loop, aggravating disease progression. Understanding the mechanisms paves the way for current treatment of COVID-19 patients.

13.
Am J Transl Res ; 13(5): 3925-3941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149990

RESUMEN

COVID-19 is widely epidemic in the world and poses a great threat to our life. Coagulopathy is one of the major characteristics in the COVID-19 patients. A growing number of studies have found that the severe COVID-19 patients have thrombotic microangiopathy and thromboembolism. Coagulopathy associated with increased risk of death in the patients. Unfortunately, the mechanism of coagulopathy is not clearly addressed. Understanding the pathophysiological mechanism of COVID-19 thrombosis and improving the coagulopathy through efficient treatment may help to stop disease progression, reduce mortality and sequelae. In severe COVID-19 patients, inflammation, cytokine storm, and coagulation are closely related, which together cause blood congestion and thrombosis. Many cytokines activate blood cells, expressing activating factors or releasing activated microparticles, and then accelerating thrombosis. However, the role of blood cells is not well understood in COVID-19 patients. In addition, cytokines stimulate endothelial cells, transforming them into a procoagulant phenotype. Therefore, determine their role and propose new strategies for the prevention and treatment of thrombosis in severe COVID-19 patients. We outline the major events of coagulopathies, discuss the role of blood and endothelial cells in thrombosis, to formulate a new anticoagulation protocol.

14.
Theranostics ; 11(13): 6445-6460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995667

RESUMEN

Background: Neoadjuvant chemotherapy is relevant to the formation of thromboembolism and secondary neoplasms in triple-negative breast cancer (TNBC). Chemotherapy-induced breast cancer cell-derived microparticles (BCMPs) may have important thrombogenic and pro-metastatic effects on platelets and endothelium, which may be related to the expression and distribution of phosphatidylserine (PS). However, investigating these interactions is challenging due to technical limitations. Methods: A study was conducted in 20 healthy individuals and 18 patients who had been recently diagnosed with TNBC and were undergoing neoadjuvant chemotherapy with doxorubicin and cyclophosphamide. BCMPs were isolated from patient blood samples and doxorubicin-treated breast cancer cell lines. Their structure and morphology were studied by electron microscopy and antigen levels were measured by fluorescence-activated cell sorting. In an inhibition assay, isolated BCMPs were pretreated with lactadherin or tissue factor antibodies. Platelets isolated from healthy subjects were treated with BCMPs and coagulation time, fibrin formation, and expression of intrinsic/extrinsic factor Xase (FXa) and thrombin were evaluated. The effects of BCMPs on endothelial thrombogenicity and integrity were assessed by confocal microscopy, electron microscopy, measurement of intrinsic/extrinsic FXa, prothrombinase assay, and transwell permeability assay. Results: Neoadjuvant chemotherapy significantly increased the expression of PS+ BCMPs in patient plasma. Its expression was associated with a rapid increase in procoagulant activity. Treatment with lactadherin, a PS-binding scavenging molecule, markedly reduced the adhesion of BCMPs and abolished their procoagulant activity, but this was not observed with tissue factor antibody treatment. Intravenous injection of BCMPs in mice induced a significant hypercoagulable state, reducing the extent of plasma fibrinogen and promoting the appearance of new thrombus. Cancer cells incubated with doxorubicin released large numbers of PS+ BCMPs, which stimulated and transformed endothelial cells into a procoagulant phenotype and increased the aggregation and activation of platelets. Moreover, cancer cells exploited this BCMP-induced endothelial leakiness and showed promoted metastasis. Pretreatment with lactadherin increased uptake of both PS+ BCMPs and cancer cells by endothelial cells and limited the transendothelial migration of cancer cells. Conclusion: Lactadherin, a biosensor that we developed, was used to study the extracellular vesicle distribution of PS, which revealed a novel PS+ BCMPs administrative axis that initiated a local coagulation cascade and facilitated metastatic colonization of circulating cancer cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Micropartículas Derivadas de Células/fisiología , Lípidos de la Membrana/análisis , Terapia Neoadyuvante/efectos adversos , Fosfatidilserinas/análisis , Trombofilia/etiología , Migración Transendotelial y Transepitelial , Neoplasias de la Mama Triple Negativas/patología , Anciano , Animales , Anticuerpos/inmunología , Antígenos de Superficie/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Factores de Coagulación Sanguínea/análisis , Ciclofosfamida/administración & dosificación , Ciclofosfamida/efectos adversos , Doxorrubicina/administración & dosificación , Doxorrubicina/efectos adversos , Endotelio Vascular/patología , Femenino , Fibrinólisis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas de la Leche/farmacología , Tromboplastina/inmunología , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
15.
Int J Mol Med ; 47(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33448315

RESUMEN

During the coronavirus disease 2019 (COVID­19) pandemic, some patients with severe COVID­19 exhibited complications such as acute ischemic stroke (AIS), which was closely associated with a poor prognosis. These patients often had an abnormal coagulation, namely, elevated levels of D­dimer and fibrinogen, and a low platelet count. Certain studies have suggested that COVID­19 induces AIS by promoting hypercoagulability. Nevertheless, the exact mechanisms through which COVID­19 leads to a hypercoagulable state in infected patients remain unclear. Understanding the underlying mechanisms of hypercoagulability is of utmost importance for the effective treatment of these patients. The present review aims to summarize the current status of research on COVID­19, hypercoagulability and ischemic stroke. The present review also aimed to shed light into the underlying mechanisms through which COVID­19 induces hypercoagulability, and to provide therapies for different mechanisms for the more effective treatment of patients with COVID­19 with ischemic stroke and prevent AIS during the COVID­19 pandemic.


Asunto(s)
COVID-19/fisiopatología , Accidente Cerebrovascular Isquémico/etiología , Trombofilia/etiología , COVID-19/complicaciones , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/prevención & control
16.
Front Cell Dev Biol ; 9: 792335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096822

RESUMEN

Cancer patients have increased SARS-CoV-2 susceptibility and are prone to developing severe COVID-19 infections. The incidence of venous thrombosis is approximately 20% in COVID-19 patients with cancer. It has been suggested that thrombus formation has been suggested to correlate with severe clinical manifestations, mortality, and sequelae. In this review, we primarily elaborate on the pathophysiological mechanisms of thrombosis in COVID-19 patients with cancer, emphasize the role of microparticles (MPs) and phosphatidylserine (PS) in coagulation, and propose an antithrombotic strategy. The coagulation mechanisms of COVID-19 and cancer synergistically amplify the coagulation cascade, and collectively promotes pulmonary microvascular occlusion. During systemic coagulation, the virus activates immune cells to release abundant proinflammatory cytokines, referred to as cytokine storm, resulting in the apoptosis of tumor and blood cells and subsequent MPs release. Additionally, we highlight that tumor cells contribute to MPs and coagulation by apoptosis owing to insufficient blood supply. A positive feedback loop of cytokines storm and MPs storm promotes microvascular coagulation storm, leading to microthrombi formation and inadequate blood perfusion. Microthrombi-damaged endothelial cells (ECs), tumor, and blood cells further aggravate the apoptosis of the cells and facilitate MPs storm. PS, especially on MPs, plays a pivotal role in the blood coagulation process, contributing to clot initiation, amplification, and propagation. Since coagulation is a common pathway of COVID-19 and cancer, and associated with mortality, patients would benefit from antithrombotic therapy. The above results lead us to assert that early stage antithrombotic therapy is optimal. This strategy is likely to maintain blood flow patency contributing to viral clearance, attenuating the formation of cytokines and MPs storm, maintaining oxygen saturation, and avoiding the progress of the disease.

17.
EBioMedicine ; 60: 102992, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32949998

RESUMEN

BACKGROUND: The role of vascular endothelium in acute promyelocytic leukaemia (APL) remains unknown. We aimed to investigate the mechanisms by which APL cells interact with endothelial cells (ECs) and to further explore how the endothelium affects bleeding as well as therapeutic interventions. METHOD: APL cells and an original APL cell line, NB4 cells, were used for experiments. The effects of leukaemic cells on ECs were analyzed in vitro and in vivo. Moreover, the endothelial barrier function and procoagulant activity were detected. An APL mouse model was established for in vivo studies. FINDINGS: APL cells interacted with ECs via ICAM-1 and VCAM-1 receptors to disrupt endothelial integrity. This binding activated MLCK signaling, resulting in the trans-endothelial passage of protein and red blood cells (RBCs). Combined treatment with asiatic acid or anti-adhesion receptor antibody inhibited the response of ECs to APL cells, thereby preventing APL-associated haemorrhage in vitro and in vivo. Activated ECs exhibited a procoagulant phenotype after phosphatidylserine exposure. Plasma from APL patients formed a thin fibrin network between procoagulant ECs, and this intercellular fibrin decreased the passage of albumin and RBCs. Ex vivo addition of fibrinogen further enhanced this barrier function in a dose-dependent manner. INTERPRETATION: Endothelial damage induced by leukaemic cell adherence promotes haemorrhaging in APL. Stabilization of ECs, decreasing adhesion receptor expression, and increasing fibrinogen transfusion levels may be a new therapeutic avenue to alleviate this fatal bleeding complication. FUNDING: National Science Foundation of China (81670128, 81873433).


Asunto(s)
Endotelio Vascular/metabolismo , Fibrina/metabolismo , Hemorragia/etiología , Hemorragia/metabolismo , Leucemia Promielocítica Aguda/complicaciones , Adulto , Anciano , Animales , Biomarcadores , Permeabilidad Capilar , Adhesión Celular , Comunicación Celular , Línea Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Endotelio Vascular/patología , Femenino , Técnica del Anticuerpo Fluorescente , Hemorragia/sangre , Hemorragia/diagnóstico , Humanos , Espacio Intracelular/metabolismo , Leucemia Promielocítica Aguda/diagnóstico , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos
18.
Thromb Res ; 188: 5-16, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32032826

RESUMEN

Patients with pancreatic cancer (PC) are at increased risk of venous thrombosis, but the precise mechanisms of hypercoagulable state in PC remain unclear. We aimed to identify how phosphatidylserine positive (PS+) blood cells (BCs), PS+ microparticles (MPs) and neutrophil extracellular traps (NETs) regulate procoagulant activity (PCA) in PC, and to assess the relationship between PCA and PC staging. A total of 83 PC patients with different stages of disease were compared to 30 healthy controls, with confocal microscopy and flow cytometry used to assess MP and cellular PS exposure. MP and cell PCA was determined using both fibrin production assays and procoagulant enzyme complex analyses, and coagulation time was further measured. Patients with stage I PC and healthy controls exhibited significantly lower frequencies of PS+ MPs and BCs relative to those with more advanced disease, which may partly due to the increased levels of inflammation cytokines in advanced disease. Functional coagulation assays indicated that PS+ MPs and BCs derived from patients with stage II/III/IV PC directly contribute to elevated FXa, thrombin, and fibrin formation, and to more rapid coagulation relative to healthy control samples. In inhibition assays, lactadherin, which antagonizes PS, led to a roughly 80% inhibition of PCA. We further used isolated NETs to stimulate endothelial cells, revealing that this led to morphological changes including retraction from cell-cell junctions and a more pro-coagulative phenotype, with DNase I and activated protein C treatment reversing these changes. In patients with stage III PC, curative resection surgery significantly reduced PCA, whereas non-curative surgery did not have a marked impact based on studies of pre- and post-operative samples. These results highlight the pathogenic activity of PS+ cells, MPs, and NETs in promoting a prothrombotic environment within individuals suffering from advanced PC. Targeting PS and NETs in these patients may thus be a viable means of preventing pathological thrombosis.


Asunto(s)
Micropartículas Derivadas de Células , Trampas Extracelulares , Neoplasias Pancreáticas , Células Sanguíneas , Células Endoteliales , Humanos , Fosfatidilserinas
19.
Am J Transl Res ; 12(12): 7640-7656, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33437350

RESUMEN

Coronavirus disease 2019 (COVID-19) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic disease with high morbidity and mortality. Inflammatory and thrombosis are its main manifestations. As an important organ of hemofiltration metabolism, the kidney is prone to blockage and destruction when filter high inflammatory and high viscous blood of COVID-19, resulting in the loss of a large amount of protein, aggravating blood concentration, and then worsening COVID-19 hypercoagulability, which may explain the phenomenon of erythrocytes aggregation blocking the capillary lumen and the main reason why the kidney has become the second largest involvement organs. Therefore, this review discusses the effects of pathophysiological mechanisms such as inflammatory storm, endothelial injury, phosphatidylserine expression, extracellular traps release on renal capillary thrombosis caused by COVID-19 infection. Meanwhile, in view of the above mechanisms, we put forward the potential targets of antithrombotic therapy, and graded management of patients, reasonable use of drugs according to the severity of the disease and the choice of time. And we support the view of prevention of thrombus before admission, continuous anticoagulation and drug choice after discharge. It is suggested that the symptomatic and supportive treatment of renal disease in critically ill patients should be combined with the concept of antithrombotic therapy. The ultimate goal is to reduce the occurrence and development of kidney disease, provide direction for the current management of COVID-19 with kidney disease, and reduce the mortality of COVID-19.

20.
Thromb Res ; 180: 87-97, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31271975

RESUMEN

Patients with colorectal cancer (CRC) are at increased risk of venous thrombosis, but the precise mechanisms of thrombogenesis in CRC remain largely unknown. We aimed to identify the novel role of neutrophil extracellular traps (NETs) in the induction of procoagulant activity (PCA) in CRC, and to evaluate its interactions with platelets and endothelial cells (ECs). In this study, we first showed that the levels of NETs in the peripheral blood of CRC patients were increased in parallel with cancer progression and reached significance in stage II patients compared to healthy subjects. In addition, neutrophils from CRC patients were more prone to produce NETs, resulting in shortened coagulation time, significantly increased thrombin-antithrombin (TAT) complexes and fibrin fibrils compared to healthy controls. Furthermore, platelets from CRC patients stimulated healthy neutrophils to extrude NETs, which could be inhibited by the depletion of HMGB1. Conversely, NETs from CRC patients could also induce the exposure of PS on platelets, leading to markedly enhanced PCA. Importantly, ECs were also converted to a procoagulant phenotype when exposed to NETs from CRC patients. The PCA of NETs-activated platelets or ECs could be inhibited either by the cleavage of NETs with DNase1 or the blockage of histone with activated protein C (APC). Our results reveal the complex interactions between neutrophils, platelets and ECs and their potential role in the hypercoagulable state in CRC. We propose that NETs may provide new therapeutic targets to combat the thrombotic consequences of CRC.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Colorrectales/complicaciones , Trampas Extracelulares/metabolismo , Activación Plaquetaria , Trombosis/etiología , Anciano , Coagulación Sanguínea , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trombosis/sangre , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA