RESUMEN
Trichomonas gallinae is a globally distributed protozoan parasite that causes avian trichomoniasis, leading to significant morbidity and mortality in birds. The present study aims to investigate the prevalence, genetic diversity, and phylogenetic relationship of T. gallinae in various bird species in Beijing. A total of 413 oropharyngeal swab samples were collected from domestic pigeons, wild pigeons, and other bird species. The overall prevalence of T. gallinae infection was 32.0% (132/413). The infection was detected in domestic pigeons, wild pigeons, and red-necked turtledoves, but not in other wild birds. Molecular analysis identified two predominant genotypes, A and B, with genotype A found in wild pigeons and genotype B found in domestic pigeons. The present study provides valuable insights on the prevalence and genetic diversity of T. gallinae in Beijing. This can be useful for understanding its pathogen distribution and host range, and the development of strategies for the prevention and control of avian trichomoniasis.
RESUMEN
Trichomonas gallinae is a protozoan parasite that is the causative agent of trichomoniasis, and infects captive and wild bird species throughout the world. Although metronidazole has been the drug of choice against trichomoniasis for decades, most Trichomonas gallinae strains have developed resistance. Therefore, drugs with new modes of action or targets are urgently needed. Here, we report the development and application of a cell-based CCK-8 method for the high-throughput screening and identification of new inhibitors of Trichomonas gallinae as a beginning point for the development of new treatments for trichomoniasis. We performed the high-throughput screening of 173 anti-parasitic compounds, and found 16 compounds that were potentially effective against Trichomonas gallinae. By measuring the median inhibitory concentration (IC50) and median cytotoxic concentration (CC50), we identified 3 potentially safe and effective compounds against Trichomonas gallinae: anisomycin, fumagillin, and MG132. In conclusion, this research successfully established a high-throughput screening method for compounds and identified 3 new safe and effective compounds against Trichomonas gallinae, providing a new treatment scheme for trichomoniasis.
Asunto(s)
Enfermedades de las Aves , Tricomoniasis , Trichomonas , Animales , Ensayos Analíticos de Alto Rendimiento , Enfermedades de las Aves/tratamiento farmacológico , Enfermedades de las Aves/parasitología , Tricomoniasis/tratamiento farmacológico , Tricomoniasis/veterinaria , Tricomoniasis/parasitología , Metronidazol/uso terapéuticoRESUMEN
Trichomonas gallinae (T. gallinae) is an infectious parasite that is prevalent worldwide in poultry and can cause death in both poultry and wild birds. Although studies have shown that T. gallinae damages host cells through direct contact, the mechanism is still unclear. In this study, we found that T. gallinae can kill host cells by ingesting fragments of the host cells, that is, by trogocytosis. Moreover, we found that the PI3K inhibitor wortmannin and the cysteine protease inhibitor E-64D prevented T. gallinae from destroying host cells. To the best of our knowledge, our study has demonstrated for the first time that T. gallinae uses trogocytosis to kill host cells. Understanding this mechanism is crucial for the prevention and control of avian trichomoniasis and will contribute to the development of vaccines and drugs for the prevention and control of avian trichomoniasis.