RESUMEN
Estrogen receptor alpha (ER)-positive breast cancer is responsible for over 60% of breast cancer cases in the U.S. Among patients diagnosed with early-stage ER+ disease, 1/3 will experience recurrence despite treatment with adjuvant endocrine therapy. ER is a nuclear hormone receptor responsible for estrogen-driven tumor growth. ER transcriptional activity is modulated by interactions with coregulators. Dysregulation of the levels of these coregulators is involved in the development of endocrine resistance. To identify ER interactors that modulate transcriptional activity in breast cancer, we utilized biotin ligase proximity profiling of ER interactomes. Mass spectrometry analysis revealed tripartite motif containing 33 (TRIM33) as an estrogen-dependent interactor of ER. shRNA knockdown showed that TRIM33 promoted ER transcriptional activity and estrogen-induced cell growth. Despite its known role as an E3 ubiquitin ligase, TRIM33 increased the stability of endogenous ER in breast cancer cells. TRIM33 offers a novel target for inhibiting estrogen-induced cancer cell growth, particularly in cases of endocrine resistance driven by ER (ESR1) gene amplification or overexpression.
RESUMEN
PURPOSE: Clinical evidence indicates that treatment with estrogens elicits anticancer effects in â¼30% of patients with advanced endocrine-resistant estrogen receptor α (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains underused. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. EXPERIMENTAL DESIGN: We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17ß-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDX), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. RESULTS: Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacologic suppression of the DNA damage response via PARP inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2-mutant and BRCA1/2-wild-type cell line and PDX models. CONCLUSIONS: E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Proteína BRCA1/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteína BRCA2/genética , Estrógenos/metabolismo , Daño del ADN , Línea Celular TumoralRESUMEN
Purpose: Clinical evidence indicates that treatment with estrogens elicits anti-cancer effects in â¼30% of patients with advanced endocrine-resistant estrogen receptor alpha (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains under-utilized. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. Experimental Design: We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived (LTED) ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17ß-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDXs), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. Results: Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacological suppression of the DNA damage response via poly(ADP-ribose) polymerase (PARP) inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2 -mutant and BRCA1 /2-wild-type cell line and PDX models. Conclusions: E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.