Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Commun Biol ; 7(1): 629, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789481

RESUMEN

Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.


Asunto(s)
Endosomas , Células Endoteliales , Fibronectinas , Integrina alfa5 , Neuropilina-1 , Neuropilina-2 , Proteómica , Proteína Activadora de GTPasa p120 , Animales , Ratones , Endosomas/metabolismo , Células Endoteliales/metabolismo , Fibronectinas/metabolismo , Integrina alfa5/metabolismo , Integrina alfa5/genética , Integrinas , Neuropilina-1/metabolismo , Neuropilina-1/genética , Neuropilina-2/metabolismo , Neuropilina-2/genética , Proteína Activadora de GTPasa p120/metabolismo , Proteína Activadora de GTPasa p120/genética , Transporte de Proteínas , Proteómica/métodos
2.
Br J Pharmacol ; 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044463

RESUMEN

BACKGROUND AND PURPOSE: Decreased aortic compliance is a precursor to numerous cardiovascular diseases. Compliance is regulated by the rigidity of the aortic wall and the vascular smooth muscle cells (VSMCs). Extracellular matrix stiffening, observed during ageing, reduces compliance. In response to increased rigidity, VSMCs generate enhanced contractile forces that result in VSMC stiffening and a further reduction in compliance. Mechanisms driving VSMC response to matrix rigidity remain poorly defined. EXPERIMENTAL APPROACH: Human aortic-VSMCs were seeded onto polyacrylamide hydrogels whose rigidity mimicked either healthy (12 kPa) or aged/diseased (72 kPa) aortae. VSMCs were treated with pharmacological agents prior to agonist stimulation to identify regulators of VSMC volume regulation. KEY RESULTS: On pliable matrices, VSMCs contracted and decreased in cell area. Meanwhile, on rigid matrices VSMCs displayed a hypertrophic-like response, increasing in area and volume. Piezo1 activation stimulated increased VSMC volume by promoting calcium ion influx and subsequent activation of PKC and aquaporin-1. Pharmacological blockade of this pathway prevented the enhanced VSMC volume response on rigid matrices whilst maintaining contractility on pliable matrices. Importantly, both piezo1 and aquaporin-1 gene expression were up-regulated during VSMC phenotypic modulation in atherosclerosis and after carotid ligation. CONCLUSIONS AND IMPLICATIONS: In response to extracellular matrix rigidity, VSMC volume is increased by a piezo1/PKC/aquaporin-1 mediated pathway. Pharmacological targeting of this pathway specifically blocks the matrix rigidity enhanced VSMC volume response, leaving VSMC contractility on healthy mimicking matrices intact. Importantly, upregulation of both piezo1 and aquaporin-1 gene expression is observed in disease relevant VSMC phenotypes.

3.
Front Pharmacol ; 13: 836710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153800

RESUMEN

Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aortic wall and normally exist in a quiescent, contractile phenotype where actomyosin-derived contractile forces maintain vascular tone. However, VSMCs are not terminally differentiated and can dedifferentiate into a proliferative, synthetic phenotype. Actomyosin force generation is essential for the function of both phenotypes. Whilst much is already known about the mechanisms of VSMC actomyosin force generation, existing assays are either low throughput and time consuming, or qualitative and inconsistent. In this study, we use polyacrylamide hydrogels, tuned to mimic the physiological stiffness of the aortic wall, in a VSMC contractility assay. Isolated VSMC area decreases following stimulation with the contractile agonists angiotensin II or carbachol. Importantly, the angiotensin II induced reduction in cell area correlated with increased traction stress generation. Inhibition of actomyosin activity using blebbistatin or Y-27632 prevented angiotensin II mediated changes in VSMC morphology, suggesting that changes in VSMC morphology and actomyosin activity are core components of the contractile response. Furthermore, we show that microtubule stability is an essential regulator of isolated VSMC contractility. Treatment with either colchicine or paclitaxel uncoupled the morphological and/or traction stress responses of angiotensin II stimulated VSMCs. Our findings support the tensegrity model of cellular mechanics and we demonstrate that microtubules act to balance actomyosin-derived traction stress generation and regulate the morphological responses of VSMCs.

4.
Cancer Res Commun ; 2(12): 1626-1640, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36970722

RESUMEN

Neuropilin (NRP) expression is highly correlated with poor outcome in multiple cancer subtypes. As known coreceptors for VEGFRs, core drivers of angiogenesis, past investigations have alluded to their functional roles in facilitating tumorigenesis by promoting invasive vessel growth. Despite this, it remains unclear as to whether NRP1 and NRP2 act in a synergistic manner to enhance pathologic angiogenesis. Here we demonstrate, using NRP1 ECKO , NRP2 ECKO , and NRP1/NRP2 ECKO mouse models, that maximum inhibition of primary tumor development and angiogenesis is achieved when both endothelial NRP1 and NRP2 are targeted simultaneously. Metastasis and secondary site angiogenesis were also significantly inhibited in NRP1/NRP2 ECKO animals. Mechanistic studies revealed that codepleting NRP1 and NRP2 in mouse-microvascular endothelial cells stimulates rapid shuttling of VEGFR-2 to Rab7+ endosomes for proteosomal degradation. Our results highlight the importance of targeting both NRP1 and NRP2 to modulate tumor angiogenesis. Significance: The findings presented in this study demonstrate that tumor angiogenesis and growth can be arrested completely by cotargeting endothelial NRP1 and NRP2. We provide new insight into the mechanisms of action regulating NRP-dependent tumor angiogenesis and signpost a novel approach to halt tumor progression.


Asunto(s)
Neoplasias , Neuropilina-1 , Animales , Ratones , Neuropilina-1/genética , Neuropilina-2/genética , Células Endoteliales/metabolismo , Neovascularización Patológica/genética , Neoplasias/genética
5.
Biophys Rev ; 13(5): 757-768, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34745374

RESUMEN

Arterial smooth muscle cells (ASMCs), the predominant cell type within the arterial wall, detect and respond to external mechanical forces. These forces can be derived from blood flow (i.e. pressure and stretch) or from the supporting extracellular matrix (i.e. stiffness and topography). The healthy arterial wall is elastic, allowing the artery to change shape in response to changes in blood pressure, a property known as arterial compliance. As we age, the mechanical forces applied to ASMCs change; blood pressure and arterial wall rigidity increase and result in a reduction in arterial compliance. These changes in mechanical environment enhance ASMC contractility and promote disease-associated changes in ASMC phenotype. For mechanical stimuli to programme ASMCs, forces must influence the cell's load-bearing apparatus, the cytoskeleton. Comprised of an interconnected network of actin filaments, microtubules and intermediate filaments, each cytoskeletal component has distinct mechanical properties that enable ASMCs to respond to changes within the mechanical environment whilst maintaining cell integrity. In this review, we discuss how mechanically driven cytoskeletal reorganisation programmes ASMC function and phenotypic switching.

6.
Front Cell Dev Biol ; 8: 395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528960

RESUMEN

Angiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on ß3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organization. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN.

7.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29794156

RESUMEN

Integrin ß3 is seen as a key anti-angiogenic target for cancer treatment due to its expression on neovasculature, but the role it plays in the process is complex; whether it is pro- or anti-angiogenic depends on the context in which it is expressed. To understand precisely ß3's role in regulating integrin adhesion complexes in endothelial cells, we characterised, by mass spectrometry, the ß3-dependent adhesome. We show that depletion of ß3-integrin in this cell type leads to changes in microtubule behaviour that control cell migration. ß3-integrin regulates microtubule stability in endothelial cells through Rcc2/Anxa2-driven control of active Rac1 localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more sensitive to microtubule targeting agents when ß3-integrin levels are reduced.


Asunto(s)
Adhesión Celular/genética , Movimiento Celular/genética , Integrina beta3/genética , Animales , Anexina A2/genética , Proteínas Cromosómicas no Histona/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular , Regulación de la Expresión Génica/genética , Humanos , Espectrometría de Masas , Ratones , Microtúbulos/genética , Microtúbulos/patología , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Proteína de Unión al GTP rac1/genética
8.
Dis Model Mech ; 8(9): 1105-19, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26159543

RESUMEN

Anti-angiogenic treatments against αvß3-integrin fail to block tumour growth in the long term, which suggests that the tumour vasculature escapes from angiogenesis inhibition through αvß3-integrin-independent mechanisms. Here, we show that suppression of ß3-integrin in mice leads to the activation of a neuropilin-1 (NRP1)-dependent cell migration pathway in endothelial cells via a mechanism that depends on NRP1's mobilisation away from mature focal adhesions following VEGF-stimulation. The simultaneous genetic targeting of both molecules significantly impairs paxillin-1 activation and focal adhesion remodelling in endothelial cells, and therefore inhibits tumour angiogenesis and the growth of already established tumours. These findings provide a firm foundation for testing drugs against these molecules in combination to treat patients with advanced cancers.


Asunto(s)
Adhesiones Focales , Integrina beta3/metabolismo , Integrinas/antagonistas & inhibidores , Neovascularización Patológica , Neuropilina-1/metabolismo , Animales , Adhesión Celular , Citoplasma , Citoesqueleto/metabolismo , Células Endoteliales/citología , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Heterocigoto , Humanos , Pulmón/fisiopatología , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcirculación , Trasplante de Neoplasias , Paxillin/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
9.
Cell Cycle ; 3(12): 1543-57, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15539956

RESUMEN

To investigate the mechanism by which UV irradiation causes S-phase-dependent chromosome aberrations and thereby genomic instability, we have developed an assay to study the DNA structure of replication forks (RFs) in UV-irradiated mammalian cells, using pulse-field gel electrophoresis for the DNA analysis. We demonstrate that replication stalling at UV-induced pyrimidine dimers results in the formation of single-strand DNA (ssDNA) regions and incomplete RF structures. In normal and in nucleotide-excision-repair (NER)-defective xeroderma pimentosum (XP) cells, stalling at dimers is rapid and prolonged and recovery depends on dimer repair or bypass. By contrast, XP variant (XPV) cells, defective in replication of a UV-damaged template due to mutation of bypass-polymerase epsilon, fail to arrest at dimers, resulting in a much higher frequency of ssDNA regions in the stalled RFs. We show that the stability of UV-arrested RFs depends directly on functional p53, and indirectly on NER and pol eta. In p53-deficient cells, the stalled sites give rise to double-strand DNA breaks (DSBs), at a frequency inversely correlated with repair capacity of the cell. In normal cells only a fraction of the stalled sites give rise to DSBs, while in XPASV, XPDSV and also XPVSV, all the sites do. XPVSV cells, although repair proficient, accumulate almost double the number of DSBs, suggesting that a high frequency of ssDNA regions in UV-arrested forks cause RF instability. These replication-associated DSBs do not accumulate in p53-proficient human cells. We propose that a major mechanism by which p53 maintains genome stability is the prevention of DSB accumulation at long-lived ssDNA regions in stalled-replication forks.


Asunto(s)
Daño del ADN/genética , Replicación del ADN/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta/efectos adversos , Línea Celular Tumoral , Supervivencia Celular , Células Cultivadas , ADN/biosíntesis , ADN/genética , Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Electroforesis en Gel de Agar , Endodesoxirribonucleasas , Fibroblastos/efectos de la radiación , Rayos gamma , Genoma Humano , Humanos , Cinética , Modelos Biológicos , Complejos Multienzimáticos , Dímeros de Pirimidina , Factores de Tiempo , Proteína p53 Supresora de Tumor/deficiencia
10.
Biosci Rep ; 24(6): 617-29, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16158199

RESUMEN

Previously we used the topoisomerase I inhibitor camptothecin (CPT), which kills mainly S-phase cells primarily by inducing double strand breaks (DSBs) in replication forks, to show that ataxia telangiectasia (A-T) fibroblasts are defective in the repair of this particular subclass of DSBs. CPT treated A-T cells reaching G2 have abnormally high levels of chromatid exchanges, viewed as prematurely condensed G2 chromosomes (G2 PCC), compared with normal cells where aberrations are mostly chromatid breaks. Here we show that A-T lymphoblastoid cells established from individuals with different mutations in the ATM gene also exhibit increased levels of chromosomal exchanges in response to CPT, indicating that the replication-associated DSBs are misrepaired in all these cells. From family studies we show that the presence of a single mutated allele in obligate A-T heterozygotes leads to intermediate levels of chromosomal exchanges in CPT-treated lymphoblastoid cells, thus providing a functional and sensitive assay to identify these individuals.


Asunto(s)
Ataxia Telangiectasia/genética , Inestabilidad Genómica , Camptotecina/toxicidad , Línea Celular , Daño del ADN , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , Heterocigoto , Homocigoto , Humanos , Hibridación Fluorescente in Situ , Técnicas In Vitro , Linfocitos/efectos de los fármacos , Mutación
11.
Cancer Lett ; 193(2): 189-97, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12706877

RESUMEN

Damaged nucleotides are removed from the condensed non-coding, or transcriptionally inactive regions of the genome by the relatively slow global genome repair system. Since few data are available for the repair of the pericentric heterochromatin region our aim was to study the repair of a specific sequence, known to be located in this region. We applied a PCR based method to monitor UV damage and repair in chAB4, a human pericentromeric heterochromatin sequence in 10 human cell lines. We here present evidence that excision repair of a sequence in the pericentromeric heterochomatin also varies between cell lines in a manner inconsistent with the canonical model. In some cell lines repair rates were efficient in heterochromatin, comparable to transcription coupled repair, but in some tumour-derived and repair-deficient cell lines we have detected deficient repair.


Asunto(s)
Centrómero/metabolismo , Daño del ADN , Heterocromatina/metabolismo , Rayos Ultravioleta , Butiratos/farmacología , Línea Celular , Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Células HeLa , Humanos , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Factores de Tiempo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA