Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Viruses ; 14(2)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35215880

RESUMEN

Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marek's disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses.


Asunto(s)
Genoma Viral , Herpesvirus Gallináceo 2/fisiología , Latencia del Virus , Replicación Viral , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Núcleo Celular/virología , Células Cultivadas , Pollos , Células Gigantes/virología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Linfocitos T/virología , Compartimentos de Replicación Viral/metabolismo
2.
J Neurosci ; 42(4): 552-566, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34872928

RESUMEN

Fluorescence imaging is an indispensable method for analysis of diverse cellular and molecular processes, enabling, for example, detection of ions, second messengers, or metabolites. Intensity-based approaches, however, are prone to artifacts introduced by changes in fluorophore concentrations. This drawback can be overcome by fluorescence lifetime imaging (FLIM) based on time-correlated single-photon counting. FLIM often necessitates long photon collection times, resulting in strong temporal binning of dynamic processes. Recently, rapidFLIM was introduced, exploiting ultra-low dead-time photodetectors together with rapid electronics. Here, we demonstrate the applicability of rapidFLIM, combined with new and improved correction schemes, for spatiotemporal fluorescence lifetime imaging of low-emission fluorophores in a biological system. Using tissue slices of hippocampi of mice of either sex, loaded with the Na+ indicator ING2, we show that improved rapidFLIM enables quantitative, dynamic imaging of neuronal Na+ signals at a full-frame temporal resolution of 0.5 Hz. Induction of transient chemical ischemia resulted in unexpectedly large Na+ influx, accompanied by considerable cell swelling. Both Na+ loading and cell swelling were dampened on inhibition of TRPV4 channels. Together, rapidFLIM enabled the spatiotemporal visualization and quantification of neuronal Na+ transients at unprecedented speed and independent from changes in cell volume. Moreover, our experiments identified TRPV4 channels as hitherto unappreciated contributors to neuronal Na+ loading on metabolic failure, suggesting this pathway as a possible target to ameliorate excitotoxic damage. Finally, rapidFLIM will allow faster and more sensitive detection of a wide range of dynamic signals with other FLIM probes, most notably those with intrinsic low-photon emission.SIGNIFICANCE STATEMENT FLIM is an indispensable method for analysis of cellular processes. FLIM often necessitates long photon collection periods, requiring the sacrifice of temporal resolution at the expense of spatial information. Here, we demonstrate the applicability of the recently introduced rapidFLIM for quantitative, dynamic imaging with low-emission fluorophores in brain slices. RapidFLIM, combined with improved correction schemes, enabled intensity-independent recording of neuronal Na+ transients at unprecedented full-frame rates of 0.5 Hz. It also allowed quantitative imaging independent from changes in cell volume, revealing a surprisingly strong and hitherto uncovered contribution of TRPV4 channels to Na+ loading on energy failure. Collectively, our study thus provides a novel, unexpected insight into the mechanisms that are responsible for Na+ changes on energy depletion.


Asunto(s)
Isquemia Encefálica/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Sodio/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Isquemia Encefálica/patología , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/química , Técnicas de Cultivo de Órganos , Canales Catiónicos TRPV/análisis
3.
Nat Commun ; 11(1): 4355, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859915

RESUMEN

The genome of influenza A viruses (IAV) is encoded in eight distinct viral ribonucleoproteins (vRNPs) that consist of negative sense viral RNA (vRNA) covered by the IAV nucleoprotein. Previous studies strongly support a selective packaging model by which vRNP segments are bundling to an octameric complex, which is integrated into budding virions. However, the pathway(s) generating a complete genome bundle is not known. We here use a multiplexed FISH assay to monitor all eight vRNAs in parallel in human lung epithelial cells. Analysis of 3.9 × 105 spots of colocalizing vRNAs provides quantitative insights into segment composition of vRNP complexes and, thus, implications for bundling routes. The complexes rarely contain multiple copies of a specific segment. The data suggest a selective packaging mechanism with limited flexibility by which vRNPs assemble into a complete IAV genome. We surmise that this flexibility forms an essential basis for the development of reassortant viruses with pandemic potential.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , ARN Viral/genética , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Células A549 , Células Epiteliales/virología , Evolución Molecular , Humanos , Hibridación in Situ , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/virología , Pulmón , Modelos Teóricos , Ribonucleoproteínas/metabolismo
4.
Chembiochem ; 18(16): 1589-1592, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28557173

RESUMEN

The influenza A virus (IAV) genome is segmented into eight viral ribonucleoproteins, each expressing a negatively oriented viral RNA (vRNA). Along the infection cycle, highly abundant single-stranded small viral RNAs (svRNA) are transcribed in a segment-specific manner. The sequences of svRNAs and of the vRNA 5'-ends are identical and highly conserved among all IAV strains. Here, we demonstrate that these sequences can be used as a target for a pan-selective sensor of IAV infection. To this end, we used a complementary fluorescent forced-intercalation RNA (IAV QB-FIT) probe with a single locked nucleic acid substitution to increase brightness. We demonstrated by fluorescence in situ hybridization (FISH) that this probe is suitable and easy to use to detect infection of different cell types by a broad variety of avian, porcine, and human IAV strains, but not by other influenza virus types. IAV QB-FIT also provides a useful tool to characterize different infection states of the host cell.


Asunto(s)
Colorantes Fluorescentes/química , Virus de la Influenza A/genética , Sustancias Intercalantes/química , Infecciones por Orthomyxoviridae/diagnóstico por imagen , Sondas ARN/química , Células A549 , Animales , Secuencia de Bases , Perros , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Virus de la Influenza A/química , Células de Riñón Canino Madin Darby , Oligodesoxirribonucleótidos/química , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Virus Puumala/genética , Compuestos de Quinolinio/química , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/química , ARN Viral/genética
5.
J Virol ; 91(10)2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28250123

RESUMEN

The RNA-dependent protein kinase (PKR) has broad antiviral activity inducing translational shutdown of viral and cellular genes and is therefore targeted by various viral proteins to facilitate pathogen propagation. The pleiotropic NS1 protein of influenza A virus acts as silencer of PKR activation and ensures high-level viral replication and virulence. However, the exact manner of this inhibition remains controversial. To elucidate the structural requirements within the NS1 protein for PKR inhibition, we generated a set of mutant viruses, identifying highly conserved arginine residues 35 and 46 within the NS1 N terminus as being most critical not only for binding to and blocking activation of PKR but also for efficient virus propagation. Biochemical and Förster resonance energy transfer (FRET)-based interaction studies showed that mutation of R35 or R46 allowed formation of NS1 dimers but eliminated any detectable binding to PKR as well as to double-stranded RNA (dsRNA). Using in vitro and in vivo approaches to phenotypic restoration, we demonstrated the essential role of the NS1 N terminus for blocking PKR. The strong attenuation conferred by NS1 mutation R35A or R46A was substantially alleviated by stable knockdown of PKR in human cells. Intriguingly, both NS1 mutant viruses did not trigger any signs of disease in PKR+/+ mice, but replicated to high titers in lungs of PKR-/- mice and caused lethal infections. These data not only establish the NS1 N terminus as highly critical for neutralization of PKR's antiviral activity but also identify this blockade as an indispensable contribution of NS1 to the viral life cycle.IMPORTANCE Influenza A virus inhibits activation of the RNA-dependent protein kinase (PKR) by means of its nonstructural NS1 protein, but the underlying mode of inhibition is debated. Using mutational analysis, we identified arginine residues 35 and 46 within the N-terminal NS1 domain as highly critical for binding to and functional silencing of PKR. In addition, our data show that this is a main activity of amino acids 35 and 46, as the strong attenuation of corresponding mutant viruses in human cells was rescued to a large extent by lowering of PKR expression levels. Significantly, this corresponded with restoration of viral virulence for NS1 R35A and R46A mutant viruses in PKR-/- mice. Therefore, our data establish a model in which the NS1 N-terminal domain engages in a binding interaction to inhibit activation of PKR and ensure efficient viral propagation and virulence.


Asunto(s)
Aminoácidos/química , Virus de la Influenza A/química , Virus de la Influenza A/patogenicidad , Proteínas no Estructurales Virales/química , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Línea Celular , Activación Enzimática , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Virus de la Influenza A/genética , Pulmón/virología , Ratones , Mutación , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virulencia , Replicación Viral , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
6.
Cell Microbiol ; 19(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27696627

RESUMEN

The Influenza A virus nucleoprotein (NP) is the major protein component of the genomic viral ribonucleoprotein (vRNP) complexes, which are the replication- and transcription-competent units of Influenza viruses. Early during infection, NP mediates import of vRNPs into the host cell nucleus where viral replication and transcription take place; also newly synthesized NP molecules are targeted into the nucleus, enabling coreplicational assembly of progeny vRNPs. NP reportedly acts as regulatory factor during infection, and it is known to be involved in numerous interactions with host cell proteins. Yet, the NP-host cell interplay is still poorly understood. Here, we report that NP significantly interacts with the nuclear compartment and displays distinct affinities for different subnuclear structures. NP subnuclear behavior was studied by expression of fluorescent NP fusion proteins - including obligate monomeric NP - and site-specific fluorescence photoactivation measurements. We found that NP constructs accumulate in subnuclear domains frequently found adjacent to or overlapping with promyelocytic leukemia bodies and Cajal bodies. Targeting of NP to Cajal bodies could further be demonstrated in the context of virus infection. We hypothesize that by targeting functional nuclear organization, NP might either link viral replication to specific cellular machinery or interfere with host cell processes.


Asunto(s)
Núcleo Celular/metabolismo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/virología , Nucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Células A549 , Animales , Núcleo Celular/virología , Perros , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Transporte de Proteínas
7.
PLoS Comput Biol ; 12(10): e1005075, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27780209

RESUMEN

After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA) triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus.


Asunto(s)
Endocitosis/fisiología , Hemaglutininas/metabolismo , Virus de la Influenza A/fisiología , Gripe Humana/virología , Modelos Biológicos , ARN Viral/metabolismo , Simulación por Computador , Difusión , Humanos , Virus de la Influenza A/química , Virus de la Influenza A/patogenicidad , ARN Viral/química , Internalización del Virus
8.
Cell Microbiol ; 18(1): 125-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26243691

RESUMEN

Viral glycoproteins are highly variable in their primary structure, but on the other hand feature a high functional conservation to fulfil their versatile tasks during the pathogenic life cycle. Typically, all protein domains are optimized in that indispensable functions can be assigned to small conserved motifs or even individual amino acids. The cytoplasmic tail of many viral spike proteins, although of particular relevance for the virus biology, is often only insufficiently characterized. Hemagglutinin (HA), the receptor-binding protein of the influenza virus comprises a short cytoplasmic tail of 13 amino acids that exhibits three highly conserved palmitoylation sites. However, the particular importance of these modifications and the tail in general for intracellular trafficking and lateral membrane organization remains elusive. In this study, we generated HA core proteins consisting of transmembrane domain, cytoplasmic tail and a minor part of the ectodomain, tagged with a yellow fluorescent protein. Different mutation and truncation variants of these chimeric proteins were investigated using confocal microscopy, to characterize the role of cytoplasmic tail and palmitoylation for the intracellular trafficking to plasma membrane and Golgi apparatus. In addition, we assessed raft partitioning of the variants by Foerster resonance energy transfer with an established raft marker. We revealed a substantial influence of the cytoplasmic tail length on the intracellular distribution and surface exposure of the proteins. A complete removal of the tail hampers a physiological trafficking of the protein, whereas a partial truncation can be compensated by cytoplasmic palmitoylations. Plasma membrane raft partitioning on the other hand was found to imperatively require palmitoylations, and the cysteine at position 551 turned out to be of most relevance. Our data shed further light on the tight interconnection between cytoplasmic elements and intracellular trafficking and suggest a function of HA palmitoylations in both lateral sorting and anterograde trafficking of the glycoprotein.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Microdominios de Membrana/metabolismo , Orthomyxoviridae/fisiología , Animales , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Células CHO , Cricetulus , Aparato de Golgi/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Microscopía Confocal , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA